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4. Cross-Validation and Bias-Variance decomposition

4.1 Goals
The goal of this exercise is to

• Implement 4-fold cross-validation.
• Understand bias-variance decomposition.

4.2 Data and sample code
This exercise is partly based on materials from last week’s Exercise 3. If you don’t have
it already, please download the code and data that was given to you for Exercise 3. You
might also want to use some of the functions you wrote yourself during previous exercises
(e.g. leastSquares.m, grid search, etc.). Additionally, please download cvDemo.m
from the course website.

4.3 Cross-validation
The simple 50%-50% split of test and training data from last week’s exercise corresponds
to the first phase of 2-fold cross-validation. It may not give an unbiased test error. A
better way to do this is to use full K-fold cross-validation.

Exercise 4.1 Implementing 4-fold cross-validation
• Using your code from last week and the file cvDemo.m do cross-validation for
polynomial degree 7. Plot the train and test RMSE as a function of λ. The
resulting figure should look like Figure 4.1: Similar to what you had last week,
but based on 4-fold cross-validation.

• How will you use 4-fold cross-validation to select the best model among various
degrees, say from 2 to 10? Write code to do it.

• BONUS: Using cross-validation, one can also compute variance of RMSE. This
tells us how confident we could be of our model selection. You can use boxplots
to do this.

�

4.4 Visualizing bias-variance decomposition
In the lecture, we learned about the expected test and train error. In this exercise, we
will reproduce the figure 7.1 from HTF (reproduced on page 3 of the “bias-variance”
lecture notes). Read the lecture notes and go through the figure again to understand
which quantities you need to plot.

You can generate the training and test set using the code below. Setting the setSeed()
to a different number will generate different random sequence, e.g. setSeed(2) and
setSeed(998) will generate two independent training and test data splits. This way
you can generate many training and test splits. The setSeed.m was given to you in
the last exercise session.
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Figure 4.1: Effect of λ on training and test errors, calculated using 4-fold cross-validation

setSeed(1);
% generate data
N = 50;
X = linspace(0.1,2*pi,N)';
y = sin(X(:)) + 0.3*randn(N,1);
% randomly permute data
idx = randperm(N);
y = y(idx);
X = X(idx);
% split data
[XTr, yTr, XTe, yTe] = split(y,X,0.9);

In the above example, we are generating 50 data points and assigning 90% to training.
Below is the pseudo-code with which you can plot the Figure from page 3 of the “Bias-
Variance” lecture notes.

for s = 1:10 % # of seeds
setSeed(s);
% generate data as shown in above matlab code
.....
....
[XTr, yTr, XTe, yTe] = split(y,X,0.005);

% for degree k
degrees = [1:10]
for k = 1:length(degrees)

% get beta using least squares

% compute train and test RMSE
rmseTr(s,k) = ...



4.4 Visualizing bias-variance decomposition 3

rmseTe(s,k) = ...
end

end
% compute expected train and test error
rmseTr_mean = mean(rmseTr);
rmseTe_mean = mean(rmseTe);
% plot
plot(degrees, rmseTe,'r−','color',[1 0.7 0.7]);
hold on
plot(degrees, rmseTr,'b−','color',[0.7 0.7 1]);
plot(degrees, rmseTe_mean,'r−','linewidth', 3);
hold on
plot(degrees, rmseTr_mean,'b−','linewidth', 3);
xlabel('degree');
ylabel('error');

Exercise 4.2 Visualizing bias-variance trade-off.
• Experiment with the number of seeds, number of training and testing examples

to get a plot that looks similar to Fig. 4.1, i.e. on average the train error should
go down and test error should go up for higher degrees.

• Look at the variance of test errors. Does it increase with the degree of polyno-
mial?

• Another good visualization is to use the boxplot (use ylim() to get an appro-
priate visualization). You can clearly see the distribution of test error.

boxplot(rmseTe, 'boxstyle', 'filled');

• What would you expect to happen if you replace least-squares with Ridge
regression? Go through the lecture notes to understand that.

• BONUS: Produce the same plot with Ridge regression. You will have to
automatically find the best λ for each degree. You do this using K-fold cross-
validation (CV) only on the training set. So you need to insert the CV code
inside. You also have to make sure that you chose an appropriate range of λ, so
that you achieve the minimum test error.

• BONUS: In the lecture, we discussed that CV produces an estimate of expected
train and test error. Check if this is the case for this data. You can do this using
the CV error that you get for Ridge regression and then comparing it against
the expected test error (repeating this for all the training datasets). See Fig.
7.14 of HTF book.

�
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Figure 4.2: Bias-variance decomposition
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