Bayesian Deep Learning

Mohammad Emtiyaz Khan

RIKEN Center for Al Project, Tokyo
http://emtiyaz.github.io

SR



The Goal of My Research

“Io understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”
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Human learning -~ Deep learning

Humans can learn from Machines require large
limited, sequential, amount of 1ID data, and
correlated data, with a don’t really understand
clear understanding of the world and cannot
the world. reason about it.

My current research focuses on reducing this gap!



Learning-Algorithms from Bayesian
Principles

Practical Bayesian principles

— To design/improve/generalize learning-algorithms.
— Distribution over unknowns.
Generalization of many existing algorithms,

— Classical (least-squares, HMM, Kalman.. etc).

— Deep Learning (SGD, RMSprop, Adam).

Helps us design new algorithms

— Reinforcement, online, continual learning, reasoning..

Impact: Everything with one common principle.



Learning Goals

« Keywords

— Statistics (Gaussian distribution, Bayes’ rule)

— Optimization (Gradient descent, Least-squares)

— Deep Learning (Stochastic gradient descent, RMSprop)
* What will you learn

— Some issues with deep learning.

— A Bayesian principle to fix it.

— Least squares from Bayesian principles.

— RMSprop optimizer from Bayesian principles.

— Applications of Bayesian principles to deep learning.



Uncertainty in Deep Learning

To estimate the confidence in the
predictions of a deep-learning system



Uncertainty in Deep Learning

(by Kendall et al. 2017)
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Learning by Optimization

Empirical Risk Minimization (ERM)
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Deep Learning: SGD/RMSprop/Adam/Newton etc.
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Learning by Bayes

Estimate a distribution over model parameters.

C p(D)p(0)
POID) = T D16)p(0)d0

Optimization formulation (Zellner, 1988)

Distribution (e.g. Gaussian) Entropy
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Exponential Family Distribution

ggz‘;fc”st e.q. Gaussian distribution
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Learn i ng by BayeSian Principles

Learning by optimization: 6 < 6 — pH ~'Vl(0)

Learning by Bayes: A < (1 — p)A — pV, E, [¢(0)]
| e

Natural and Expectation parameters of g
e.g., Gaussian distribution

Natural parameters {V 'm,V '} q(0) := N(0m,V)

mean parameters 2
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Learning by Bayes

Learning by optimization: 6 < 6 — pH 'V ¢(6)

Learning by Bayes: A < (1 —p)A — pV K, [£(0)]

. /
Natural and Expectation parameters of g

Alstats 2017 | — Classical algorithms:h_east-squares, Newton’s method, Kalman
- filters, Baum-Welch, Forward-backward, etc.

— Bayesian inference: EM, Laplace’s method, SVI, VMP.
ICML 2018 — Deep learning: SGD, RMSprop, Adam.

NeurlPS 2018 4 — Reinforcement learning: parameter-space exploration, natural
policy-search.

— Continual learning: Elastic-weight consolidation.
— Online learning: Exponential-weight average.

— Global optimization: Natural evolutionary strategies, Gaussian
homotopy, continuation method & smoothed optimization.

— List incomplete... 13
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Bayesian inference on Conditionally-
Conjugate Models

VMP: Sequential SVI: Update local variable
update with rho =1 with rho=1 and global
0 variable with rho in (0,1)

oo

B E o @ >:/j\l Global
Learning by Bayes is 7 N
a generalization of Local () ,. Data
both of these ~ N
algorithms.

Images taken from Hoffman et al. (2013) and https://www.zybuluo.com/nanmeng/note/369145
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Neural Network
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Adam vs Our Method (on Logistic-Reg)

Iteration 1

- Adam

— Our method
(mean)

Our method
(samples)

M =5,
Rho = 0.01,
Gamma = 0.01



Input 2

Adam vs Our Method (on Neural Nets)

Epoch O

4

ICML 2018

— Adam

— QOurs
(mean)

Ours
(samples)

(By Runa E.)
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Practical DL with Bayes (on ImageNet)
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Out-of-Distributions Test

In-distribution
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— VOGN
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Deep Reinforcement Learning

On OpenAl Gym Cheetah with DDPG
with DNN with [400,300] ReLU
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A 5 page review

Fast yet Simple Natural-Gradient Descent for
Variational Inference in Complex Models
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Abstract—Bayesian inference plays an important role in ad-
vancing machine learning, but faces computational challenges
when applied to complex models such as deep neural networks.
Variational inference circumvents these challenges by formulating
Bayvesian inference as an optimization problem and solving it
using gradient-based optimization. In this paper, we argue in
favor of natural-gradient approaches which, unlike their gradient-
based counterparts, can improve convergence by exploiting the
information geometry of the solutions. We show how to derive fast
yet simple natural-gradient updates by using a duality associated
with exponential-family distributions. An attractive feature of
these methods is that, by using natural-gradients, they are able
to extract accurate local approximations for individual model
components. We summarize recent results for Bayesian deep
learning showing the superiority of natural-gradient approaches
over their gradient counterparts.

Index Terms—Bayesian inference, variational inference, nat-
ural gradients, stochastic gradients, information geometry,
exponential-family distributions, nonconjugate models.

Didrik Nielsen
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
didrik.nielsen @riken.jp

prove the rate of convergence [7]-19]. Unfortunately, these
approaches only apply to a restricted class of models known
as conditionally-conjugate models, and do not work for non-
conjugate models such as Bayesian neural networks.

This paper discusses some recent methods that generalize
the use of natural gradients to such large and complex non-
conjugate models. We show that, for exponential-family ap-
proximations, a duality between their natural and expectation
parameter-spaces enables a simple natural-gradient update.
The resulting updates are equivalent to a recently proposed
method called Conjugate-computation Variational Inference
(CVI) [10]. An attractive feature of the method is that it
naturally obtains local exponential-family approximations for
individual model components. We discuss the application
of the CVI method to Bayesian neural networks and show
some recent results from a recent work [11] demonstrating
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Homework

* Derive the Bayes update for least-squares.
* Derive the same for neural networks

» Can you think of ways to RMSprop and
Bayes update even more similar?
— RMSprop vs Bayes with diagonal Gaussian.

— Justify why your way is reasonable, and also
when will it work and when it won't.



Thanks!

Slides, papers, and code available at
https://emtiyaz.github.io
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