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What will you learn?

Why is Bayesian inference useful?

1. It allows for computation of uncertainty.

2. It can prevent overfitting in a principled way.

Why is it computationally challenging?

3. It usually requires solving hard integrals.

How does Variational Inference (VI) simplify the
computational challenge?

4. Integration is converted to an optimization problem.

5. Optimization gives a lower bound to the integral.

How to perform variational inference?

6. By using stochastic gradient descent.
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1 Why be Bayesian?

Why be Bayesian

What are the main reasons behind
the recent success of Machine-
learning and deep-learning meth-
ods, e.g., in fields such as computer
vision, speech recognition, and
recommendation systems?

Existing methods focus on fitting
the data well (e.g., using maximum
likelihood), but this may be prob-
lematic.

Which is a better fit?
Consider this real data where y-axis
is the frequency of an event and x-
axis is its magnitude.

2



This example is taken from Nate Silver’s book.

Which model is a better fit? blue or red?
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Uncertainty Estimation

In many applications, it is also im-
portant to estimate the uncertainty
of our unknowns and/or predictions.
In this lecture, we will learn about a
Bayesian way to do so.

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic
uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
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to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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2 Bayesian Model for Regression

Regression

Regression is to relate input vari-
ables to the output variable, to ei-
ther predict outputs for new inputs
and/or to understand the effect of
the input on the output.

Dataset for regression

In regression, data consists of pairs
(xn, yn), where xn is a vector of D
inputs and yn is the n’th output.
Number of pairs N is the data-size
and D is the dimensionality.

Prediction
In prediction, we wish to predict
the output for a new input vec-
tor, i.e., find a regression function
that approximates the output “well
enough” given inputs.

yn ≈ fθ(xn), for all n

where θ is the parameter of the re-
gression model.
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Likelihood
Assume yn to be independent sam-
ples from an exponential family dis-
tribution, whose mean parameter is
equal to fθ(xn):

p(y|X) =

N∏
n=1

p(yn|fθ(xn))

For example, when p is a Gaussian,
the log-likelihood results in mean-
square error.

Examples of fθ

Linear model: θ>xn

Generalized: f (θ>xn)

Deep Neural Network:

f1(Θ1f2(Θ2 . . . fL(ΘLxn)))

Input

O
utput
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Maximum A Posteriori (MAP)

By using a regularizer log p(θ),
we can estimate θ by maximiz-
ing the following loss denoted by
LMAP (θ) :=

N∑
n=1

log p(yn|fθ(xn)) + log p(θ)

Example: an L2 regularizer. The
θMAP obtained by maximizing
LMAP is known as the maximum-a-
posteriori estimate.

Stochastic Gradient Descent (SGD)

When N is large, choose a random
pair (xn, yn) in the training set and
approximate the gradient:

∂LMAP

∂θ
≈ ∂

∂θ
[N log p(yn|fθ(xn)) + log p(θ)]

Using the above stochastic gradient,
take a step:

θt+1 = θt + ρt
∂̂LMAP

∂θ

where t is the iteration, and ρt is a
learning rate.
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The Joint Distribution
How can we obtain a distribution
over θ? We can make use of the
Bayes’ rule.

We can view p(θ) as a prior distri-
bution to define the following joint
distribution:

log p(y,θ|X)

:=

N∑
n=1

log p(yn|fθ(xn)) + log p(θ) + cnst

= log

[
N∏
n=1

p(yn|fθ(xn))

]
p(θ)

For example: L2 loss corresponds to
a Gaussian prior distribution.
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The Posterior Distribution
The posterior distribution is defined
using the Bayes’ rule:

p(θ|y,X) =
p(y,θ|X)

p(y|X)

=

[∏N
n=1 p(yn|fθ(xn))

]
p(θ)∫ [∏N

n=1 p(yn|fθ(xn))
]
p(θ)dθ

The integral over all possible θ
defines the normalizing constant of
the posterior distribution.

Without it, we cannot know the true
spread of the distribution, which
gives us a notion of uncertainty or
confidence.

Taken from [Nickisch and Rasmussen, 2008]
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Difficult Integral

The normalizing constant of the pos-
terior distribution is difficult to com-
pute in general:

p(y|X) =

∫ [ N∏
n=1

p(yn|fθ(xn))

]
p(θ)dθ

There are (at least) three reasons
behind it:

1) Too many factors (large N)
2) Too many dimensions (large D)
3) Nonconjugacy (e.g., non Gaussian
likelihood with a Gaussian prior)
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3 Variational Inference

Integration to Optimization.

Variational Distribution
Approximate the posterior:

p(θ|y,X) ≈ qλ(θ)

qλ is called the variational distri-
bution, e.g., a Gaussian distribution
with λ := {µ,Σ}

Variational Lower Bound
Given qλ, we can obtain a lower
bound to the integral:

p(y|X) ≥ LV I(λ) :=
N∑
i=1

Eqλ[log p(yn|fθ(xn))] + Eqλ

[
log

p(θ)

qλ(θ)

]
,

a.k.a. variational objective, but it
is very similar to the MAP objective:

LMAP (θ) =

N∑
n=1

log p(yn|fθ(xn))+log p(θ)

So we can just use SGD!
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Stochastic Gradients I
How do we compute a stochastic
gradient of LV I? The reparameter-
ization trick is one method to do
so [Kingma and Welling, 2013]. Let
qλ := N (z|µ, diag(σ2)), then

θ(λ) = µ + σ ◦ ε, ε ∼ N (ε|0, I)

is a sample from qλ. We have written
θ as a function of λ := {µ,σ}.

Here is a stochastic gradient with
one Monte-Carlo sample θ(λ):

∂LV I(λ)

∂λ
≈ ∂θ

∂λ

∂LMAP (θ)

∂θ

− ∂θ

∂λ

∂log qλ(θ)

∂θ
− ∂log qλ(θ)

∂λ

This can be done whenever qλ is
reparameterizable.
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Stochastic Gradients II
REINFORCE is another approach
to computing a stochastic gradient
of LV I(λ) [Williams, 1992]. It uses
the log-derivative trick:

∂qλ
∂λ

= qλ
∂log qλ
∂λ

to express the gradient of the ex-
pected MAP objective as

∂

∂λ
Eqλ[LMAP (θ)] =

Eqλ

[
∂log qλ(θ)

∂λ
LMAP (θ)

]
The REINFORCE gradient estima-
tor with one Monte-Carlo sample
θ(λ) is given by:

∂LV I(λ)

∂λ
≈ ∂log qλ(θ)

∂λ
LMAP (θ)

− ∂log qλ(θ)

∂λ
(1 + log qλ(θ))

REINFORCE is more widely
applicable compared to the
reparametrization trick, but has
higher variance.
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Homework

1. Derive the expression for REINFORCE.

2. VI for Linear regression

(a) Derive the variational lower bound for a linear-regression

problem. Assume a Gaussian prior on θ.

(b) What kind of posterior approximation is appropriate in this

case?

(c) When will the lower bound be tight?

(d) What is the memory and computational complexity of SGD?
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