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What will you learn?

Why is Bayesian inference useful?

1. It allows for computation of uncertainty:.

2. It can prevent overfitting in a principled way:.

Why is it computationally challenging?

3. It usually requires solving hard integrals.
How does Variational Inference (VI) simplify the
computational challenge?

4. Integration is converted to an optimization problem.

5. Optimization gives a lower bound to the integral.

How to perform variational inference?

6. By using stochastic gradient descent.



1 Why be Bayesian?

Why be Bayesian

What are the main reasons behind
the recent success of Machine-
learning and deep-learning meth-
ods, e.g.. in fields such as computer
vision, speech recognition, and
recommendation systems?

Existing methods focus on fitting
the data well (e.g., using maximum

likelihood), but this may be prob-
lematic.

Which is a better fit?

Consider this real data where y-axis
is the frequency of an event and x-
axis 1s its magnitude.
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This example is taken from Nate Silver’s book.

Which model is a better fit? blue or red?
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Uncertainty Estimation

In many applications, it is also im-
portant to estimate the uncertainty
of our unknowns and/or predictions.
In this lecture, we will learn about a
Bayesian way to do so.

Scene

(taken from Kendall et. al. 2017)



2 Bayesian Model for Regression

Regression

Regression is to relate input vari-
ables to the output variable, to ei-
ther predict outputs for new inputs
and/or to understand the effect of
the input on the output.

Dataset for regression

In regression, data consists of pairs
(Xp, Yn), where x,, is a vector of D
inputs and ¥, is the n’th output.
Number of pairs N is the data-size
and D is the dimensionality.

Prediction

In prediction, we wish to predict
the output for a new input vec-
tor, i.e., find a regression function
that approximates the output “well
enough” given inputs.

Yn ~ fo(x,), for all n

where 0 is the parameter of the re-
gression model.



Likelihood

Assume v, to be independent sam-
ples from an exponential family dis-
tribution, whose mean parameter is

equal to fp(x,):

p(y|X) = Hp(yn|f9<xn>>

For example, when p is a Gaussian,
the log-likelihood results in mean-
square error.

Examples of fy

Linear model: 8'x,
Generalized: f(0'x,)

Deep Neural Network:
f1(©1/2(Oz. .. fL(O1x,)))
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Maximum A Posteriori (MAP)

By using a regularizer logp(0),
we can estimate 6 by maximiz-
ing the following loss denoted by

EMAP(H) =
N

> log plyal fo(x4)) + log p(6)

n=1

Example: an Lo regularizer. The
O, 4p obtained by maximizing
Laap 1s known as the maximum-a-
posterior1 estimate.

Stochastic Gradient Descent (SGD)

When N is large, choose a random
pair (x,,,y,) in the training set and
approximate the gradient:

OLyap _ O
00 00

Using the above stochastic gradient,
take a step:

[N log p(yn fo(xn)) + log p(0)]

OLiap
00

where t is the iteration, and p; is a
learning rate.

0,1 =0,+p



The Joint Distribution

How can we obtain a distribution
over @7 We can make use of the
Bayes’ rule.

We can view p(@) as a prior distri-
bution to define the following joint
distribution:

log p(y, 0]X)
N

=Y log p(ynl fo(xn)) + log p(6) + cnst

n=1

= log [Hp(ynlfe(xn)) p(6)

For example: Lo loss corresponds to
a (Gaussian prior distribution.



The Posterior Distribution

The posterior distribution is defined
using the Bayes’ rule:

~ ply, 0|X)
pBly, X) = p(y|X)

 [mpwdsie)| pe)
/ {Hg:1p(yn|f0(xn))} p(0)do

The integral over all possible 6
defines the normalizing constant of
the posterior distribution.

Without it, we cannot know the true
spread of the distribution, which
gives us a notion of uncertainty or
confidence.

Prior

Prior
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+ MAP
—Gaussian VI
—Gaussian VI with SGD

Difficult Integral

The normalizing constant of the pos-
terior distribution is difficult to com-
pute in general:

(Y|X /[Hp yn‘fﬁ Xn))] ( )d@

There are (at least) three reasons
behind it:

1) Too many factors (large N)

2) Too many dimensions (large D)
3) Nonconjugacy (e.g., non Gaussian
likelihood with a Gaussian prior)
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3 Variational Inference

Integration to Optimization.

Variational Distribution

Approximate the posterior:

p(Oly, X) ~ q\(0)

gy is called the variational distri-
bution, e.g., a Gaussian distribution

with A = {u, 3}

Variational Lower Bound

Given ¢y, we can obtain a lower
bound to the integral:

p(y|X) > Lyr(A) =

- p(6)
By ogplunl ) + B s 25|

a.k.a. wvariational objective, but it
is very similar to the MAP objective:

Larap(8) = log p(ya| fo(x))+log p(6)

n=1

So we can just use SGD!
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Stochastic Gradients 1

How do we compute a stochastic
gradient of Ly ;7 The reparameter-
wzatton trick is one method to do
Soll| |. Let
¢\ = N(z|u, diag(a?)), then

OAN)=p+ooe, e€~N(el0,1)

is a sample from ¢,. We have written
0 as a function of A :={u,o}.

Here is a stochastic gradient with
one Monte-Carlo sample @(\):

OLy(N) 90 OLyap(6)

OX  OX 00
~ 000logqx(0)  Ologgx(0)

ox 00 O
This can be done whenever ¢, is
reparameterizable.

12



Stochastic Gradients 11

REINFORCE is another approach
to computing a stochastic gradient

of Lyr(A) | ]. Tt uses

the log-derivative trick:

%: Olog q)
ax o

to express the gradient of the ex-
pected MAP objective as

9
O

Eq\[Larar(0)] =

Olog g,(0)
O\

The REINFORCE gradient estima-
tor with one Monte-Carlo sample
O(\) is given by:

OLy(A) _ Ologqa(0)
D)

- 2D 1 1 tog0(6)

REINFORCE is more widely
applicable  compared to  the
reparametrization trick, but has
higher variance.

Eq, Lyap(0)

Larap(0)
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Homework
1. Derive the expression for REINFORCE.

2. VI for Linear regression
(a) Derive the variational lower bound for a linear-regression
problem. Assume a Gaussian prior on 8.

(b) What kind of posterior approximation is appropriate in this
case?

(¢) When will the lower bound be tight?
(d) What is the memory and computational complexity of SGD?
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