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Goals

Learn a few methods for classification and understand why
they might work and sometimes fail. '.

1. Classification.
2. K-Nearest Neighbors (k-NN).
3. Logistic Regression.

4. Deep Neural Networks.

'Some figures are taken from Hastie, Tibshirani, and Friedman’s book on
statistical learning. Some from Chris Bishop’s Machine learning book and one

from Kevin Murphy’s book. The CNN picture taken from http://www.mdpi.com/1099-
4300/19/6/242



1 Classification

Similar to regression, classification
relates input variables x to the out-
put variable y, but now y can take
only discrete values, i.e. y is a cate-
gorical (or nominal) variable.

Binary classification

When y can only take two discrete
values, it is called binary classifica-
tion. We will denote these values as
y € {C1,Co}. These values are also
called class labels or simply classes.
Other common notations are y €
{—-1,41} or y € {0,1}, although
there may not necessarily be any or-
dering between the two classes.

Multi-class classification

In a multi-class classification, y can
take multiple discrete values i.e.
Yy € {CQ,C1, e ,CK_1} for a K-
class problem.  Again, there is
no notion of ordering among these
classes, but we may ignore this fact
and may sometimes use the follow-
ing notation for convenience: y €

{0,1,2,..., K — 1}



Examples of classification problems

An online banking service must be
able to determine whether or not a
transaction being performed on the
site is fraudulent, on the basis of the
user’'s IP address, past transaction
history, and so forth.

An example is shown below on
the default dataset. The annual
incomes and monthly credit card
balances of a number of individu-
als. The individuals who defaulted
on their credit card payments are
shown in orange, and those who did
not are shown in blue.
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A person arrives at the emergency
room with a set of symptoms that
could possibly be attributed to
one of the two medical conditions.
Which of the two conditions does the
individual have?

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 4
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FIGURE 4.12. A scatterplot matrix of the South
African heart disease data. FEach plot shows a pair of
risk factors, and the cases and controls are color coded
(red is a case). The variable family history of heart
disease (famhist) is binary (yes or no).



Classifier

A classifier will divide the input
space into a collection of regions be-
longing to each class. The bound-
aries of these regions are calld deci-
sion boundaries. A classifier can be
linear or nonlinear.

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 4

FIGURE 4.1. The left plot shows some data from
three classes, with linear deciston boundaries found
by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by
finding linear boundaries in the five-dimensional space
X1, X0, X1 X2, X2, X2, Linear inequalities in this space
are quadratic inequalities in the original space.



2 Logistic Regression

Classification with linear regression

We can use y = 0 for C; and y = 1
for Cy (or vice-versa), and simply
use least-squares to predict g,
oiven X,. We can predict C; when
Us < 0.5 and Cy when y, > 0.5.
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Any problems with this approach?
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FIGURE 2.1. A classification example in two di-
mensions. The classes are coded as a binary variable
( =0, = 1), and then fit by linear re-
gression. The line is the decision boundary defined by
mT[;’ = 0.5. The orange shaded region denotes that part
of input space classified as , while the blue region
is classified as



Logistic regression

We need to model p(y = Cy|x) and
p(y = Co|x) such that they both are
> 0 and also sum to 1. For a new
input x,, we can classify to C; when

(U« |x4) < 0.5.

We will use the logistic function.

_exp()
1+ exp(x)’

o(x) 1 —o(x)
We pass the linear-regression model
n, = X' B through the logistic func-
tion to get the probabilities.

1

Tt exp(x)

pyn=Cilxn) =0(m),  plyn =Calx,) =1 —a(ny)

This figure visualizes the probabil-
ities obtained for a 2-D problem

(taken from KPM Chapter 7).
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The probabilistic model

Assuming that each vy, is indepen-
dent of others, we can define the
probability of y given X and (3:

p(y|X,B) = Hp Yn|Xp)
1] »v —cl|xn 1] »(y. =Calxn)
n:yn=C1 n:yn=Co

A better way to write this is to use
the coding y,, € {0,1}.

plyX. 8) = [ o)t = om)]

The log-likelihood is given as follows:

Lnie(B) = log p(y|X, B)
N

=Zynloga<sé£5> + (1= ya) log[l — 0(%;8)]

= Z ynX B — log[l + exp(X. B)]



Optimization using SGD

We will use the following fact to de-
rive the gradient.

0 log|1 + exp(z)] ()

— X =0

or ° P

Taking the gradient of the log-
likelihood, we get the following
stochastic gradient estimate:

oL T -

This is very similar to SGD for lin-
ear regression, i.e., the gradient is in
the direction of x; with magnitude
equal to prediction error for the 2'th

example.

Penalized Logistic Regression

The cost-function can be unbounded
when the data is linearly separable.

To get a well-defined problem, we
will regularize.

N D
min — > logplyalxy, B) + A Y 5]
n=1 d=1
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3 K-Nearest Neighbors (k-INN)

k-Nearest Neighbor (k-INN)
The k-NN prediction for an x, is,

fk}(X*> — % Z Yn

xXnE€nbhy,(Xx)

where nbhy(x) is the neighborhood
of x defined by the & closest points
X, in the training data.

We show results for £ = 1 and k& =
15 respectively.
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FIGURE 2.3. The same classification example in two
dimensions as in Figure 2.1. The classes are coded as
a binary variable ( =0, = 1), and then
predicted by 1-nearest-neighbor classification.
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Bias-variance revisited

How should train and test error vary with k7

k = Number of Nearest Neighbors
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FIGURE 2.4. Misclassification curves for the simula-
tion example used in Figures 2.1, 2.2 and 2.3. A single
training sample of size 200 was used, and a test sample
of size 10,000. The orange curves are test and the blue
are training error for k-nearest-neighbor classification.
The results for linear regression are the bigger orange
and blue squares at three degrees of freedom. The pur-
ple line is the optimal Bayes error rate.
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Curse of dimensionality

According to Pedro Domingos:
“Intuitions fail in high dimensions”.
This is also known as the curse of
dimensionality (Bellman, 1961).

Claim 1: “Generalizing correctly
becomes exponentially harder as
the dimensionality grows because
fixed-size training sets cover a dwin-
dling fraction of the input space.”

The expected edge length is ep(r) =
/P eg.

€10(0.01) = 0.63, e10(0.1) = 0.80

ie. to capture 1% or 10% of the
data, we must cover 63% or 80% of
the range of each input variable.
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FIGURE 2.6. The curse of dimensionality is well il-
lustrated by a subcubical neighborhood for uniform data
i a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction
r of the volume of the data, for different dimensions p.
In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.
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As a result, the sampling density
is proportional to NYP e if
N; = 100 is the sample size for a
l-input problem, then Njg = 100
is required for the same sampling
density with 10 inputs.

Claim 2: In high-dimension,
data-points are far from each other.
Consequently, “as the dimensional-
ity increases, the choice of nearest
neighbor becomes effectively ran-
dom.”

Consider N data points uniformly
distributed in a D-dimensional unit
ball centered at the origin. We con-
sider a nearest-neighbor estimate at
the origin. The median distance
from the origin to the closest data

point 1s,
[ 1/N 1/D
(13"

For N = 500, D = 10, this number
is 0.52, more than halfway to the
boundary:.
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Discussion

(Taken from HTF). We will see (in
the next few lectures) that there
is a whole spectrum of models
between the rigid linear models and
the extremely flexible 1-NN model.
Each model comes with their own
assumptions and biases.

(Based on Domingos). You might
think that gathering more input
variables never hurts, since at the
worst they provide no new informa-
tion about the output. But in fact
their benefits may be outweighed by
the curse of dimensionality.
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4 Deep Neural Networks

Multi-Layer Perceptron (MLP)

Also known as feed-forward neural
network,

x, — all =z 5 a2 5 72

n n n

where {y,,x,} is the n’th input-

output pair, zq(f) is the k’'th hidden

vector, aq(f) is the corresponding

activation. There are a total of K
layers.

For the k’th layer, we obtain the
(k)

m’th activation a,,, and the cor-

()

responding hidden variable zp,, as
shown below:

— 7!

f) = (B 20, == (o)

where z™V is the hidden vector
for the previous layer. For the
first layer, we set z%o) = x,. ror
the last layer, we use a link func-

tion to map zq(lK_l) to the output y,,.

Note that a 1-Layer MLP is simply
a generalization of linear/logistic re-
gression.
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Defining B™ as a matrix with rows
(ﬂg))T, we can express the compu-
tation of activation and hidden vec-

tors as follows:

In a more compact notation, we can
express the input-output relation-
ship as follows:

On = g((BENT « B(BE2 s h(x ...

where ¢ is an appropriate link
function to match the output.

An illustration below shows recon-
struction of the function |x| at N =
50 data points sampled at the blue
dots. The trained network has 2
layers and 3-hidden variables with
tanh() activation function.
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Optimization and Back-propagation

We can learn parameters B using
stochastic gradient-descent.

Gradient computation can be
complicated due to the deep struc-
ture of the network. We can use
back-propagation to simplify the
computation. The key-idea is to
express the derivatives in terms of

()

activations a,,’ and hidden variables

sz) using the chain rule. Below is

the outline of the algorithm:

Forward Pass Backward Pass
a@ r@
(1) (1)
11: alt
y | ¢ ()
I ¢ 1) ‘L

(1)
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Step 1: Compute a%m and zq(q,k) using

forward propagation.

Step 2: Compute 57(1’“) = f)ﬁ/@agf)
using backward propagation:

8" = diag [h’(aff)} <B<k)>T5(k)

n n

Step 3: Compute 9L/0BW¥) using
the above derivatives.

af;(k) =29 (sz)>T

Convolutional Neural Network (CNN)

CNN produce the state-of-the-art
results for image classification.
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Tricks for Deep Learning

Obtaining a good generalization
error with neural networks and
avoiding overfitting requires a lot of
hacks and tricks. A good summary
of these are given in Bottou’s paper
“Stochastic gradient tricks”. In
addition, initialization seems to
play a huge role in improving the
performance.  See the following
paper “On the importance of ini-
tialization and momentum in deep
learning” by Ilya Sutskever et. al.

Modern stochastic optimization
methods, such as RMSprop and
Adam, are currently heavily used
by practitioners to optimizer neural
networks.
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