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Hello!
Goals

Understand (some) fundamentals of Machine learning’.

Part I : Understand the basic set-up to analyze
data under a machine-learning framework.

1. Before Machine Learning. Problem
2. ML Problem: Regression. Da‘lia
3. Model: Linear Regression. Mode

4. Cost Function: MSE.
thm

“['ZNI

5. Algorithm 1: Gradient Descent.

6. Algorithm 2: Least Squares.
! Foq-i\(i‘d‘l’foh Ii

Part II : Understand what can go wrong when
learning from data and how to correct it.

6. Challenge: Overfitting.

7. Solutions: Regularization.

( "

(
8. Bias-Variance Decomposition. Tyade - o C g

9. Recent Advances.

'Some figures are taken from Hastie, Tibshirani, and Friedman’s book on
statistical learning and also from Chris Bishop’s Machine learning book

1



1 Before Machine Learning

Acquiring Data

Data is the most important com-
ponent of modern Machine Learn-
ing. There are many important
steps that can have a huge impact
on the performance of a machine-
learning system. To name a few:
data collection, cleaning, validation,
pre-processing, and storage.
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Picture taken from “Doing data science”.



Defining an ML problem

Once we have some data, the next
step is to re-define_the real-world
problem in the context of data, and
then to convert it to a machine-
learning problem.

ML problems can_be \iatego 1zed
into 3 main t s:®supervised,t n-
supervised, anﬁgfeinforcement learn-
ing. In practice, a successful end-to-
end system might require a combi-

nation of these problems.



2 ML Problem: Regre\ssion
X

regw%i""’ .

What is regression? S AR
Pen

Regression is to relate input vari- - 3

e |
ables to the output variable, to ei- / !
ther predict outputs for new inputs . i |

and/or to understand the effect of ~ X Weigkt
the input on the output.

“’fL preson
Dataset for regression « «
In regression, data consists of pairs 14 1 @ -
(Y, Xp), where g, is the n’th out- ¥ 1 — —

: , <] —

put and x,, is a vector of D inputs. gv - :
Number of pairs N is the data-size .N\ 3 H
and D is the dimensionality. LD i -
Examples of regression oo .- 0o

Y, YV

Yo f (%)

(a) Height is correlated with weight. Taken from

“Machine Learning for Hackers”
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Two goals of regression

In prediction, we wish to predict
the output for a new input vector,
e.g. what is the weight of a person
who is 170 cm tall?

In interpretation, we wish to under-
stand the effect of inputs on output,
e.g. are taller people heavier too?

The regression function

For both the goals, we need to find a
function that approximates the out-
put “well enough” given inputs.

Y, = f(x,), for all n



Additional Notes

Prediction vs Interpretation

Some questions to think about: are these prediction tasks or interpreta-
tion task?

(P(e}ic\(’“ 1. What is the life-expectancy of a person who has been smoking for
\in 10 years? -

o i
¢
g 1\\¢t‘2‘ 2. Does smoking cause cancer? j\_-_r;(—

‘Pw.Aic\"“‘ 3. When the number of packs a smoker smokes per day doubles, their
oret? " predicted life span gets cut in half?” ? ?

Q T4 A massivé scale earthquake will occur in California within next

o 30 years.

5. More than 300 bird species in north America could reduce their
habitat by half or more by 2080.
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3 Model: Linear Regression

What is it? Y % 4: 6( >
Linear regression is a model|/that as- L
sumes a linear relationship between yeﬁfass,om ,C en( 110V

inputs and the output.

a)( 's linear n X

ax |s C‘\JGJH"\ ’fx
byt lineey tn X

q(x) with X=X
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Vieight

Pimght

Why learn about linear regression?

Plenty of reasons: simple, easy to
understand, most widely used, eas-
ily generalized to non-linear mod-
els. Most importantly, you can learn
almost all fundamental concepts of
ML with regression alone.



Simple linear regression N

With only one input dimension, it is

simple linear regression. /7
y &
Yn = [(xn) :t:bﬁQ.+ BT Cone Am)
‘ 'a9 S|°‘>Q oo\QL
Here, 5y and (; are parameters of Data — (r\gq,mm-tm)
the model.
|x 6
1Tl i
. . . x| = (X1
Multiple linear regression a
With multiple input dimension, it is X

multiple linear regression.

v 1
D [1. Xn( Xnz =00 70D

Yn & f(x,) bias —— ﬁ.
= 0o+ B1xp1 + ...+ BpTup Zn F, [B
- R _ -
X, 8 o= 578 1
2 =
Learning/estimation /fitting 4B - C
Given data, we would li.ke.to find NXD Dx Nx M
B = B, B1,--.,Pp|. This is called <>
learning or estimating the parame- Ixe x| Xl
ters or fitting the model. A ﬂ’
yT\ o f Xn,[ XY\,L

heitd Vo - Y, g0 20£3x60 +1 x2k

Y, 125 ~0+3xF0 +1x3k
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Additional Notes

p > n Problem

Consider the following simple situation: You have N = 1 and you want
to fit y1 =~ By + Pix11, i.e. you want to find 5y and 51 given one pair
(y1,x11). Is it possible to find such a line? A“)’ line 1s 300

dearees ol gfwo'ovv\ (N D)
This problem is related to something called p > n problem. In our nota-
tion, this will be called D > N problem, i.e. the number of parameters
exceeds number of data examples.

Similar issues will arise when we use gradient descent or least-squares to
fit a linear model. These problems are all solved by using regularization,

which we will learn later.

| ’:/l 1500  Tnfitet s’
SR ‘ VA K2
% YGi°Il'§/ — L@

|P%e %D+FXL
/
22 %51

—|o24 = // {507(—>

(‘DD T 4w | A, T




4 (Cost Function: MSE

Motivation
Consider the following models.

I-parameter model: y,, ~ [
2-parameter model: vy, &= By + B1xn1

How can we estimate (or guess) val-
ues of 3 given the data D?

What is a cost function? Model: Yy % f_)\(,.T/é

Cost functions (or utilities or en- (ost .
C(D, [

ergy) are used to learn parameters func
that explain the data well. They de-
fine how costly our mistakes are.

Evor: € = Y, -%a [

Two desirable properties of cost functions
R

When y is real-valued, it is desirable
that the cost is symmetric around
0, since both +ve and -ve errors
should be penalized equally.

G

eyrol >

| n»
[Also, our cost function should pe- C (e' €2, -~
nalize “large” mistakes and “very-

Llarge” mistakes almost equally.

10



€,
Qs

c(euez €N>
2 nsE (e; )DZ L

Mean Square Error (MSE)
MSE is one of the most popular cost

€ A
2
3
64, 4

function.
1 X Asswl'- “all o\aJra are @‘(““L
o _ 2 Iy
MSE(B) = N ;[yn f(xn)]" Move precisely- m&erewde""l:
N Z |A?'\'L‘(a"/
Does it have both the properties? i 5{71b«+ec1>
5\/ww~o.‘trfc , Yés ‘
An exercise for MSE - o
Compute MSE for 1-param model: : e 0%
;N
L = — . — Bl (2
(Bo) QN;[ZU Bl (2)
— — SRS
Each row contains a y,, and column b,
is By. First, compute MSE for for 204~ - - - -- O -—
Yy, = {1,2,3,4} and draw MSE as 3]
| ) (,2,3,49
a function of fy (by adding the first 1 Mean (24 )
four rows). Then add y, = 20 to L Mediwn |
it, and redraw MSE. What do you +
observe and why? T
& > J e« |l
w\Bo |1 |2 [3 |4 [5 |6 |7 + agter “20
1 o 1 2 |3 |4 s - - _
i G C{) |2. 3 /’\747--——0——.__(14'
2 |1 2 Yo 3 Lo — & :[Le,Fo_(g_zg b3
3 |2 | [ O] R P — XY}
MSE [ 14 |6 | ¢ | 1430 Y
0 113 |?> (# | 1€ ][5
MSE S X -

l)( Y\My YW-I: Le QC‘C,



Additional Notes

A question for cost functions

Is there an automatic way to define loss functions? |-

i

Nasty cost functions: Visualization 1

See Andrej Karpathy Tumblr post for many cost functions
gone “‘wrong’ for neural network. http://lossfunctions.
tumblr.com/. loss/
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http://lossfunctions.tumblr.com/
http://lossfunctions.tumblr.com/

5 Algorithm 1: Gradient Descent

Learning/estimation /fitting

Given a cost function £(3), we wish
to find 3" that minimizes the cost:

—- minL(B3), subject to B € RP+ lﬂ v /io
’ Ot(ﬁ‘):i’(\/z_;<yn_%o> )

B

This is learning posed as an opti- o{(}o/llb _ Zj;‘vir( Y- /Lo— /4‘7"n>
: 2

mization problem. We will use an

algorithm to solve the problem. (o o ~T
o i((”\\ 15 (h-Fo )

. AT - : Nnz
Grid search - B (JDH
D+

Grid search is one of the simplest : >TK
Lip): K

algorithms where we compute cost
over a grid (of say M points) to find
the minimum. This is extremely \ /

simple and works for any kind of X ,

loss when we have very few param-

eters and the loss is easy to compute.
Loy €

say ‘ M\ po‘w\“}s

(o)
For a large number of parameters, B°<— ["' ?mrf:i-' o]
however, grid search has too many oy ¢ = I: [mj{b\( ﬁDB

@esulting in exponential \’E WSE[i] < Compeite locs (/%,)
D

computational complexity.(ZChoos-

end
ing 1?1 good range of values is ano‘ther \ esarin ( s b) D
pro eﬂé Wko\'}' is the CoMPu'lql?dr\aL Ngeeo
cemplexity of dhis qu,r}JrL'm? for fi=1° I%T
(l Are there any other iésue%? D & Yo ¥n e
e et (wp M%) e | M
Look o Wkipe b MSE = MSE+Sy

(big-0 potechon’) 13 Y poy each MELi] end



O(ND 3@) loss function is."“smooth " (Lipschtz)

Follow the gradient BQ(@)

A gradient (at a point) is the slope
of the tangent (at that point). It
points to the direction of largest
increase of the function.

For 2-parameter model, MSE is
shown below.

(T used y? = [2,-1,1.5] and xT = [-1,1, -1]).

160~
140
1204
100 -\
80\

N\
60
40
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o5 Ol ) (y 4,- pn.)
BULWP’) 5(2’ errOY €n

= ’['i /i(yw 6%?:’[%—)‘ - Nr,t( {L Yﬂ)
l C/i (Yvu‘ﬁ'o"ﬁf)(wb Xm A i()(.h#' Y>Ym
N N ~ LN " ot eftror
- . E_ en[;] = ’l' ze“ K (scaler)
\ o nt N noe ‘rﬂP‘*'b



' —— O
Batch gradient descent Y /é < e erd

To minimize the function, take a o
step in the (opposite) direction of = éot(ﬁ_' )
the gradient

g+ gl _ a&‘ﬁ(ﬁ(’“)) .

New (;Tr-en{' = 8’3 |
where a@ > 0 is the step-size (or ' 'u, (-)"/5(0
1%%_{%6)' () ,0) (b) -f-o (owovae f : o—iﬁ)?
We wont the sequonc@ 14 T A L’_:‘;
Gradient descent for 1-parameter b"’
model to minimize MSE: 3 (5) i 2 (A_ )/ﬂ>

T R

A = B, -~ 5

Where § = > y,,/N. When is this

-~
sequence guaranteed to converge? ) ﬁ -y -y—
(fou what velueof o£ 7) 4= . D cx)
Gradients for MSE ﬁf"*‘z__ 8 y)
1 & = (1 °‘>[4° t OCY
NT -
L) = IN Z(yn — Xp )2 (3) |
n=1 & P

then the gradient is given by,

or = En
N{\QIL/_"\

ey -xex, )

n=1

—

What is the computational complex-
ity of batch gradient descent?

15
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o(ND M) = 0(MD) > 0(D) K

rid Seo.uvcl«. . G D s&D B&, | N o X
Stochastic gradient descent — - -) &Zn
: ﬂ N rel N
When N is large, choose a random &
pair (x;,y;) in the training set and _LoNxe ¥
approximate the gradient: N |

- 8)( . Q .

6£ ]. ~T — - l—1 :
— & —— | N(y; — X; Z] 5}
55~ % Nu-xeE] @ o

Using the above “stochastic” gradi- ASSQWP'[{OY"'
ent, take a step:

B+l — gk oM (y; — gZT (k))gi

. 'lh{? Leawlr\ 'rq'b?,
What is the computational com- ot conste

"wt  converge-
plexity? S&D & °w d

For convergence, o — 0 “appro-
priately”. One such condition called
Robbins-Monroe condition suggests

to take ¥ such that: —

00 -
k=

ioz(k) = 00, Z(a(k))2 < 00 _—— l

= “P : (6) (K)
od € [ovas’,'ani—.

One way to obtain such sequence

is ak) = ‘1/(1 + k)r) where r € Z"ék) = 0

R T Sk O (CORY

16



'D&'La N Moole‘l, A‘aor:'ﬁ«m

2
’ - ol I [ y /é
PIREINE AR S FN NS

i
3&(/3“0) 'z (Y- £x)) 2 [X] [;sj

(K)

/VT (k)
a/é 'memJ PC\QS y\,[é
~ ei XL C OVP‘({Q oYYoY erv
’P;cZi _Ba([c Fqss cy,?_(,’-
(omolaw\ly

%mau, O‘a‘té

&« Laxao data (/él\/@%n' = ﬁ xn( ‘I’PZX‘“'




In rare cases, we can compute
the minimum of the cost function
analytically. Linear regression using
MSE is one such case. The solution
is obtained using normal equations.
This is called least squares. (Gauss)

derlve the equation, we use the

C
Soptl?ﬁh?ty conditions. See the lec-

ture notes for Gradient Descent.

6) (D :
oLB) POpT - <
B CorverqeS

Using this, derive the normal equa-

tion for 1- parameter model. | T W mﬁv\”\' aC( (L>
,l(; ) L ; e, K =0 : ﬂ
= = ! _’" Hhen Bﬂﬁ> =0

(é = . 0P
a_ﬁﬁ);li fn CO?FOS;{'C s th 'tme)

o, N

£ 3P -£)
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o I n
Normal equations o N e
Recall the expression of the gradient
: - C I lell+..---+€

for multiple linear regression: o U Nﬂ

- 7~
oL 1 =T l =T ~ X XN
—=——Xe=—-X (y— X
Set it to zero to get the normal equa- N U U H : e
tions for linear regression. r;(r‘ % ’EN N
~T ~T o~ x|
Xe=X (y-XB) =0 & \@’Q’/\/ﬂw
o . v
implying that the error is orthogonal ~T
to rows of X and columns of X. =L €

—NT K Xni Kip - - xl]) N ~T N*_
/;: { X'Ll Xq_l .- XZD - _L >< (Xﬁ Z
o A T

X‘\T Ll Xy ¥ 7 Ped

N%D

RN t
| %;\ Aa MAXW\MW\ olej'fﬂe L
18 X %oeo’-ow\
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o {; z}j}’ Concept of renk



fod,-o & X7(¥g-y)i

Geometrlc Interpretatlon n L"“’“;Vf;“\"”“h“ of -&(Jv
Denote the d’th column of X by x. X & = 3/
_ _ l(l _)S,)/ .. A D _ L
U1 (1 x1; 712 ... T1p |5 r>\<J/ K
> 1 w97 oo ... x < T
y=| % X=|, T A
| YN | |1 N1 ZN2 ... ZND | ’}(JT
. N*D y
The normal equations suggest to X
lchoose_a vector]in the span of X. /3

The following figure illustrates this e — X ﬁ.
(taken {rom Blsho&s book) [ ]

S"QLQ o Q] \IQC‘('D’YS 0o Q(V‘?J uu'H'\E\ l}fa( : <— XT/} - Y‘Z.
Cmbinatelt | oy« %Tp Y
(\_t ) D,P_)(:l..- 220 N,g v
Nl NxDpxl Nxl
o~ ~
Y-X[2 XE
Nx1
~ - fo
XE =1 - x|
Least-squares B Po
When XTX is invertible, we have a - _«J: {5 e /g

closed-form expression for the mini- __

3 :.(XTX)lfiTy (X - y>

—- T o~
We can predict values for a new X, ><> F
~T 7,31 _1~ g GY&W\ mq’tnx M
Je=%p0"=%X X)" Xy acsume thet it's \V\\W\’ €

—
—
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Invertibility and uniqueness

TheN Gram matrix )NCT)N( 1s invertible
iff X has full column rank.

Proof: Assume N > D. The fun-
damental theorem of linear algebra
states that the dimensionality of null
space is zero for full column rank.
This implies that the Gram matrix
is positive definite, which implies in-
vertibility.

X 2

@) F

b

Rank deficiency and ill-conditioning

Unfortunately, X could often be
rank deficient in practice, e.g. when
D > N, or when the columns x,; are
(nearly) collinear. In the later case,
the matrix is ill-conditioned, leading
to numerical issues.

Summary of linear regression

We have studied three methods:

1. Grid search
2. (Stochastic) gradient descent

3. Least squares

20
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/ Nomq\i'zﬂio_l’\_ ; (X—,X) - )

~Additional Notes Dx! [’f‘il -

*n1

Implementation . .

[t %0 2y o- %aa] OXI
There are many ways to implement matrix inversion, but using QR de-

composition is one of the most robust ways. Matlab’s backslash operator

implements this (and much more) in just one line.

1 beta = inv(X"'*xX) *x (X'xy)
2 beta = pinv(X'*X) * (X'xy)
3 beta = (X'*X) \ (X'xy)

For robust implementation, see Sec. 7.5.2 of Kevin Murphy’s book.

To do K=DorN (w"e"ﬁ °)
ate
. Revise limear algebra to understand why needs to have tu '
N1 Revise li loch derstand why X needs to have full §;40
rank. Read the Wikipedia page on rank of a matrix. o §

2. For details on the geometrical interpretation, see Bishop 3.1.2. :arnife
However, better to read this after the lecture on “basis-function gg|"
expansion”. Also, note that notation in the book is different. This
might make the reading difficult.

3. Understand matrix inversion robust implementation and play with
it using the code for labs. Read Kevin Murphy’s section 7.5.2 for
details.

4. Understand ill-conditioning. Reading about the “condition num-
ber” in Wikipedia will help. Also, understanding SVD is essen-

tial. Here is another link provided by Dana Kianfar (EPFL)
http://www.cs.uleth.ca/~holzmann/notes/illconditioned.pdf.

5. Work out the computational complexity of least-squares (use the
Wikipedia page on computational complexity).

21
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7 Challenge: Overfitting Uw

L~
Motivation y, = ph .
Linear model can be easily modified Yo o ALY A'xn

to obtain more powerful non-linear .pp.se
model. We can use basis function x,=¢  #e%
expansion to get a non-linear regres- Y, fd+ Ac W W[JI.
sion model, and then use a sequence " .. |

=p ot

of these models to construct a deep z @
model. wheve g7z b+ cpe Po ;1L

Ad)#j ™M1 data '.
Consider simple linear regression. *mey’ make Hee :
. ,,'ZZD

'lnd: We erfec{ m2D

Given one-dimensional input z,,, we [oss ll- rondehioned

can generate a polynomial basis. - 4”‘?'“1 bt VD,
é(z,) = [1, T, 2 a0 xM] bul what maflers is K (Y:E‘;()

Then we fit a linear model using the
original and the generated features:

Yn = Bo+ B+ Box’+. ..+ Bz

o@%\\“ﬁ 1 .l w
)
v l {’D o° @j%pw\e Pawf\v&"’!vS
1 2. '6/;* 0 (ox theer combiv '@
1\ 66%% -0.5 In l'mea'( 'rwwl?—]/
A -1 wheneveY
U%WT?S . 1 0 1 " "y (Nﬂ))

N is Ered, Dis vessd ’ " l DB | b
[’ .XD
Y5 that 300&? i thete ate Some

. T uye Q;C{XQC'I'I.W‘/ 2e10 Sil"j'&"' val-«:?
SMP\O}% '(:lx. Precers OQAQQ ,?ea(" é’wjm”ﬁh‘a- S\" =D, 5> K -



Overfitting and Underfitting

Overfitting is fitting the noise in ad-
dition to the signal. Underfitting is
not fitting the signal well. In reality,

it is very difficult to be able to tell
the signal from the noise.

Which is a better fit?

Try a real situation. Below, y-axis is
the frequency of an event and x-axis
is the magnitude. It is clear that as
magnitude increases, frequency de-
1 Jo¥treases.
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(D Cutious be cause dav't
ko w the Aa":a
@ Dov't have much dta
above @ .We ate s
ao‘\l'yslfnﬁ fue 4-pare™
haseol on vary f‘“’fj
@ logithmic S(m‘e >
Pw‘gl@ﬂ‘a{?c ’ u
P2 obsenee”
p..-a\,\_\[alue i'\["( 5
_ ovvovs thece way

: M'b W\Qﬁe'('
q(kq S "lJ—L‘"e S
okAY -&,emhse N7D .

I
\é\' 0.01 - Y o — (/(00
h 0.001 4 2_qu41|¢\
e == e ﬂ-ﬂp il 5
This exlample- is tak.en fro-m Nat-e Silvler’s bc;ok. ‘ ___? I'”;M![:Lé j—/ |opo0

Mﬁniluo'o of E_qfﬂ\alual(e —7

23



Which model is a better fit? blue or red?

0.00014 - - R T - S SO S-SR S
4.5 5.0 5.5 6.0 6.5 70 25 8.0 8.5 9.0 9.5

Another example: Which model is
a better fit? black or red? Data is
denoted by circle.

MSE ove t‘ola%a ( L\anJ”

@ 02
@ v,

This is mot  the riah‘f?
Cri‘tqn:a ’('D LOO,C Q.t'
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Complex models overtfit easily (g‘%}s)\b\,)

Circles are data points, green line is the truth & red line is
the model fit. M is the maximum degree in the generated

polynomial basis. B r 04 O 2 '@04-@' X £ 0%,

a v o x
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when we can colloct the data,
If you increase the amount of data, overfitting might reduce.
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Occam’s razor &

One solution is dictated by Occam’s Linear mode L
razor which states that “Simpler t
models are better — in absence of M iE
certainty.” any qlrﬂ‘&w
Sometimes, if you increase the

amount of data, you might reduce ore /

. . (V)
overfitting. But, when unsure, ™"
choose a simple model over a com-
plicated one.

W klﬁlﬂ Mgér: :
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hand t"l’,t;q-h.on

Additional Notes L

. o yter = K
Read about overfitting in the paper by Pedro Domingos (section 3 and 5

of “A few useful things to know about machine learning”). You can also

read Nate Silver’s book on “The signal and the noise” (the earthquake

example is taken from this book).
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8 Solutions: Regularization

What is regularization?

Through regularization, we can pe-
nalize complex models and favor
simpler ones: 5

MSE Regu lavizer o | 5
' A - 2 ~X<>’i— A—/]‘xl)—l—)\ (/Qo+ﬁ‘ .

min L(B)+ 5N Z CHENE L P
Rfolﬁe Reqression J=1 —@ Q1: Wlet Ppews , A —> 00

The second term is a regularizer &2
(with A > 0). The main point here
is that an input variable weighted by
a small 5; will have less influence on \ [_;T/g

the output. Aty
Jﬂr NS )f‘“ﬂ

Regularization Parameter - v

The parameter A can be tuned to g Wle an expression [> te,
reduce overfitting. But, how do you  mnmizer ok (2

1 ] l T
hoose A7 Wirdethe SUDeLX=US %y (T o
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. . fa O“YQA?' o A(Lt‘on'nr
The generalization error O tewdoes e < A?R
of e Pm},lpm (W\F}b\fe .
(>

The generalization error of a learn-
ing method is the expected predic-
tion error for'unseen'data, i.e. mis-
takes made on the data that we are
coing to see in the future. This , e
quantifies how well the method gen-  What is “unseen " data
eralizes. Tf;c\(Y«h: defme ..

7 heveY the leSS e -
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Simulating the future i\

Ideally, we should choose A to mini- T 100
mize the mistakes that will be made /éa»l— ﬁz U ﬁoé
in the future. Obviously, we do not P % .y
have the future data, but we can al- A > b
ways stmulate the future using the

data in hand. ' Mtr

D, 150k Dl
Splitting the data aiving deda  alideki
. . < >
For this purpose, we split the data - — 1
into train and validation sets, e.g. deta in hand
80% as training data and 20% as 12--- - 'V"' N
validation data. We pretend that “or  Npe
the validation set is the future data. (very 5\..\(,\¢w\el,) o )
We fit our model on the training set A4 0.5 B2t X
and compute a prediction-error on , ?j’ T
the validation set. This gives us an = — 2 - V) 4t
estimate of the generalization error ) -so of(ey f 3 )2
one instant of the future). - y- =%
( ) Msbtr(p)— éD( L - /é
1.1 e
g, [P0) :
(5,#/“955}2(" )
_91057 J leD
S al
Lt .
10 lOCIm . _%m
118 ? <— o ¢E * ﬁ*()\>= fow Msbu({b)'r%/'g’ -
O «— M v«L({b(A)) A
21.17*
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e
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Cross-validation

Random splitting (aka bootstrap) is
not an efficient method.

K-fold cross-validation allows us to
do this efficiently. We randomly
partition the data into K groups.
We train on K — 1 groups and test
on the remaining group. We re-

peat this until we have tested on all |«

£ gets. We then average the results.

£

RA‘I\A-OW\ ‘SLNg&L‘V? 15
‘V"‘)t eg&:{de\’\t (

—
tzze— =

|; daton cebs ave o‘fs\ioiwi’l.

E\S'(".Mc"‘es o {{QLE(YG( ¥

e e . bit befler (low variance
run 1 bt its _9_?_3’5?_'
~— 5 S\“.U(le .amd ! ‘l'S
run *-SF"t . K SuYse
run 3 5 =4 4 oo ID‘,J
%)\ = [ lD 1D o i
run 4y foy all A
{u( k= (- K
Cross—validatiqn rgturns an estimate Bl model Tyaiv
of the generalization error. besk ov He)\\;q\.‘olab'a
MSEUA\_[K—S
X *zl%
_ mean \MSE
Additional Notes 4 M5Evq| = oe\le\"qu
égn K=\'K

Details on cross-validation are in Chapter 7 in the book by Hastie, Tib-

shirani, and Friedman (HTF). You can also read about bootstrap in
Section 7.11 in HTF book. This method is related to random splitting

and is a very popular method.
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9 Bias-Variance Decomposition

What is bias-variance? Val. ervor

One natural question is how does over\'H*rfJ wdegit
the test error vary wrt A7 When :_ .
A is high, the model underfits, — pemplex S single
while when A is small, the model ¢ Complerity
overfits. Therefore, a good value is
somewhere in between. %
. . hial bi4s
Bias-variance decomposition ex- high vencne )
plains the shape of this curve.
Low Variance High Variance 'LQ
actwa ise
; & bqt Mt F’{@C
ow V° e
4
e



Generalization error

Given training data\Dtr of size N ,)
we would like to estimate the ex-
pected error made in future predic-
tion. This error is the generalization
error. Below is a definition suppose g
©

that Wiﬁb&}ﬁ/ﬁ E’_ﬁ’n_@ test datata%;% Y x _

teErr(Dy,) = EDte[{y — f(x)}] = i D {(Y" ﬁ*>i>]
T r Mhtdda e

Generalization error is different from ek Livea wedel
the training error which measures obtsived by
To N
how well you fit the data. [IJ@Q mq Miw 2 [(Yn - ﬁ En ]
N * : N ),(\/y“_"'

trErr(D,,.) = Z[{yn — f(xn)}] Dy

n=1 V“_;:\/,

N /5* )__<'n,

-Fuw?;{or of s Snchon of {yqiuirﬁ data D‘l:(




Errors vs model complexity

As we increase the model complex- teErr —Dﬂ
ity, how do these errors vary? The

blue line shows training error for a

dataset with YN = 50) while the red

line shows the generalization error

for that dataset.

N

PIRRS
Simple model have high train and Dy, 16,5
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. v
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10 Recent Advances

Deep Learning & Over-
fitting

Deep learning has shown a new (but
old) way to combat overfitting. For
many applications, more data and
deep architecture combined with
stochastic gradient-descent is able
to get us to a good minimum which
generalizes well.

Challenges

There are many challenges ahead.
Learning from nasty, unreliable
data still remains a challenge (e.g.
small sample size, redundant data,
non-stationary data, sequential
learning).

On the other hand, living beings -
even young ones - are very good in
dealing with such data. How do they
do it, and how can we design ML
methods that can learn like them?
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