Foundations of Machine Learning

Mohammad Emtiyaz Khan RIKEN-AIP, Tokyo OIST, Okinawa

http://emtiyaz.github.io

emtiyaz.khan@riken.jp

May 12, 2022

©Mohammad Emtiyaz Khan 2022

Hello

17

Goals

Understand (some) fundamentals of Machine learning¹.

Part I : Understand the basic set-up to analyze data under a machine-learning framework.

1. Before Machine Learning. Problem

2. ML Problem: Regression. Data

3. Model: Linear Regression. Model

- 4. Cost Function: MSE.
- 4. Cost Function: MSE.
 5. Algorithm 1: Gradient Descent.
- 6. Algorithm 2: Least Squares.

Foundation"

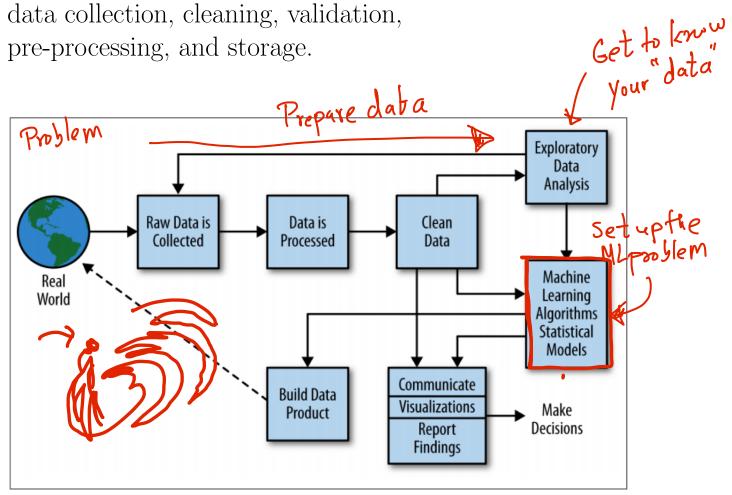
Part II : Understand what can go wrong when learning from data and how to correct it.

- 6. Challenge: Overfitting.
- 7. Solutions: Regularization.
- 8. Bias-Variance Decomposition. "Trade-off
- 9. Recent Advances.

¹Some figures are taken from Hastie, Tibshirani, and Friedman's book on statistical learning and also from Chris Bishop's Machine learning book

1 Before Machine Learning Acquiring Data

Data is the most important component of modern Machine Learning. There are many important steps that can have a huge impact on the performance of a machinelearning system. To name a few: data collection, cleaning, validation, pre-processing, and storage.



Picture taken from "Doing data science".

Defining an ML problem

Once we have some data, the next step is to re-define the real-world problem in the context of data, and then to convert it to a machinelearning problem.

ML problems can be categorized into 3 main types: supervised, unsupervised, and reinforcement learning. In practice, a successful end-toend system might require a combination of these problems.

2 ML Problem: Regression

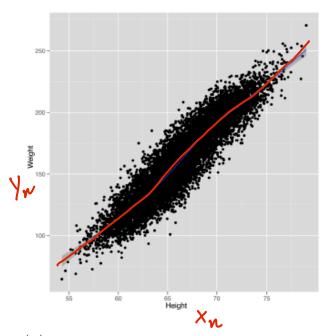
What is regression?

Regression is to relate input variables to the output variable, to either predict outputs for new inputs and/or to understand the effect of the input on the output.

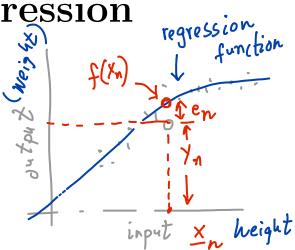
Dataset for regression

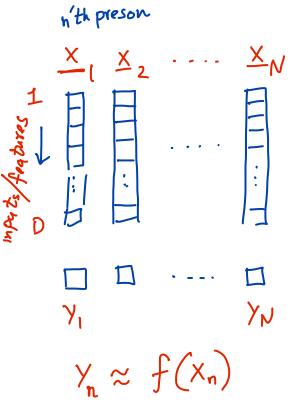
In regression, data consists of pairs (y_n, \mathbf{x}_n) , where y_n is the *n*'th output and \mathbf{x}_n is a vector of *D* inputs. Number of pairs *N* is the data-size and *D* is the dimensionality.

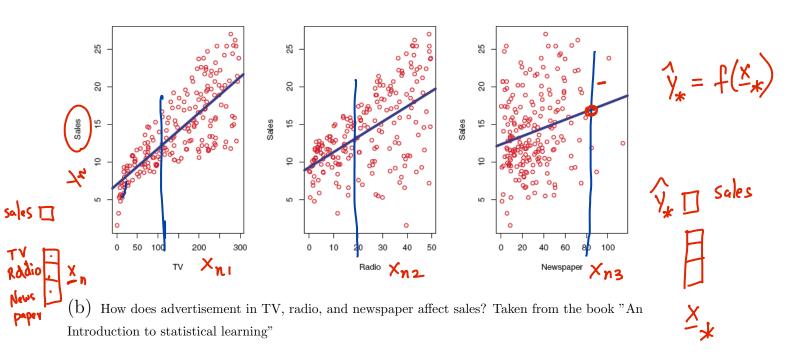
Examples of regression



(a) Height is correlated with weight. Taken from "Machine Learning for Hackers"







Two goals of regression

In prediction, we wish to predict the output for a new input vector, e.g. what is the weight of a person who is 170 cm tall?

In interpretation, we wish to understand the effect of inputs on output, e.g. are taller people heavier too?

The regression function

For both the goals, we need to find a function that approximates the output "well enough" given inputs.

 $y_n \approx f(\mathbf{x}_n)$, for all n

Additional Notes

Prediction vs Interpretation

Some questions to think about: are these prediction tasks or interpretation task?

Prediction 1. What is the life-expectancy of a person who has been smoking for 10 years?

interpretation 2. Does smoking cause cancer?

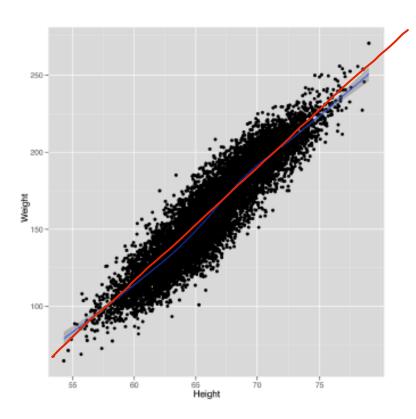
Prediction 3. When the number of packs a smoker smokes per day doubles, their predicted life span gets cut in half? ??

- I, P¹4. A massive scale earthquake will occur in California within next 30 years.
 - 5. More than 300 bird species in north America could reduce their habitat by half or more by 2080.

3 Model: Linear Regression

What is it?

Linear regression is a model that assumes a linear relationship between inputs and the output.



 $Y_n \approx f(x_n)$ regression function ax is linear in X $a \chi^2$ is quadratic " χ byt linear in χ^2 a(x') with $x' = x^2$ logX # infection Japan Van couver

Why learn about *linear* regression?

Plenty of reasons: simple, easy to understand, most widely used, easily generalized to non-linear models. Most importantly, you can learn almost all fundamental concepts of ML with regression alone.

Simple linear regression

With only one input dimension, it is simple linear regression.

 $y_n \approx f(\mathbf{x}_n) := \beta_0 + \beta_1 x_{n1}$ "bias" slope Here, β_0 and β_1 are parameters of the model.

Multiple linear regression

With multiple input dimension, it is multiple linear regression.

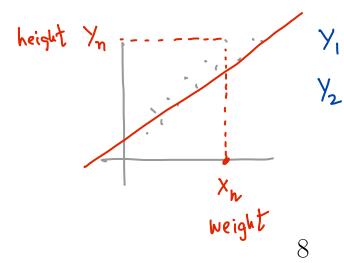
$$y_n \approx f(\mathbf{x}_n) \text{ bias}$$

$$:= \beta_0 + \beta_1 x_{n1} + \ldots + \beta_D x_{nD}$$

$$= \widetilde{\mathbf{x}}_n^T \boldsymbol{\beta} \quad (1)$$

Learning/estimation/fitting

Given data, we would like to find $\boldsymbol{\beta} = [\beta_0, \beta_1, \dots, \beta_D]$. This is called learning or estimating the parameters or fitting the model.



ß, X (one dim) Data → ModeL (parameters) 1×6 Xn $\begin{array}{c} 1 \\ X_{n_1} \\ X_{n_2} \\ \vdots \\ X_n \end{array}$ $\widetilde{\mathbf{x}}^{T}_{\beta}$ AB =NXD DXM NXM 1×6 6×1 1×1 $\begin{array}{cccc} & & & & & & \\ & & & & \\ & &$ 185 ≈0+3×70 + 1×3k

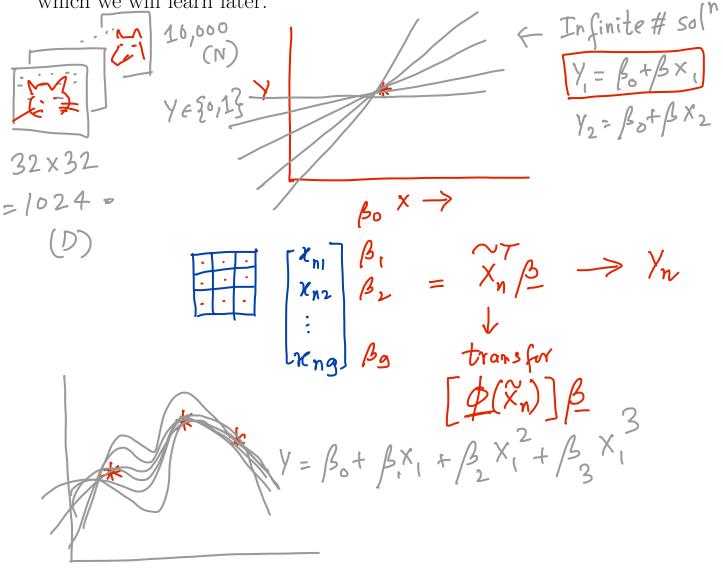
Additional Notes

p > n **Problem**

Consider the following simple situation: You have N = 1 and you want to fit $y_1 \approx \beta_0 + \beta_1 x_{11}$, i.e. you want to find β_0 and β_1 given one pair (y_1, x_{11}) . Is it possible to find such a line? Any line is good ! degrees of freedom, (N, D)

This problem is related to something called p > n problem. In our notation, this will be called D > N problem, i.e. the number of parameters exceeds number of data examples.

Similar issues will arise when we use gradient descent or least-squares to fit a linear model. These problems are all solved by using regularization, which we will learn later.



4 Cost Function: MSE

Motivation

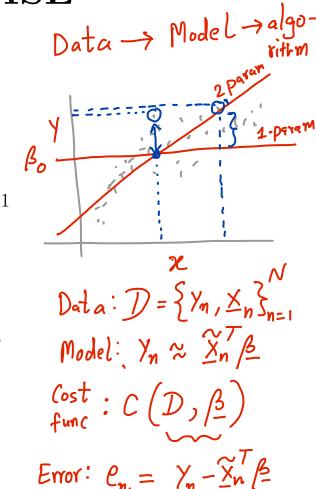
Consider the following models.

1-parameter model: $y_n \approx \beta_0$ 2-parameter model: $y_n \approx \beta_0 + \beta_1 x_{n1}$

How can we estimate (or guess) values of $\boldsymbol{\beta}$ given the data $\boldsymbol{\mathcal{D}}$?

What is a cost function?

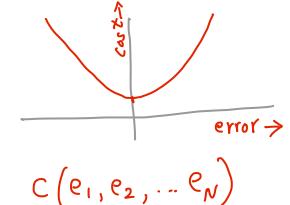
Cost functions (or utilities or energy) are used to learn parameters that explain the data well. They define how costly our mistakes are.

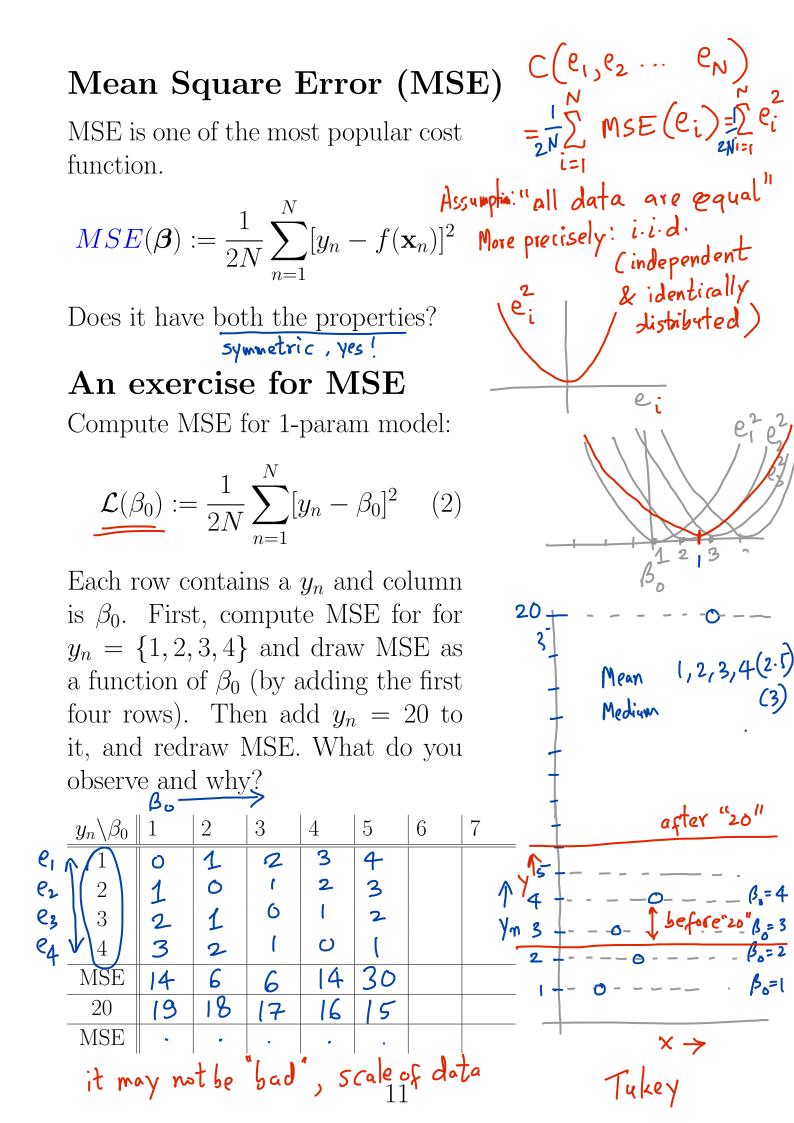


Two desirable properties of cost functions

When \underline{y} is real-valued, it is desirable that the cost is symmetric around 0, since both +ve and -ve errors should be penalized equally.

Also, our cost function should penalize "large" mistakes and "verylarge" mistakes almost equally.





Additional Notes

A question for cost functions

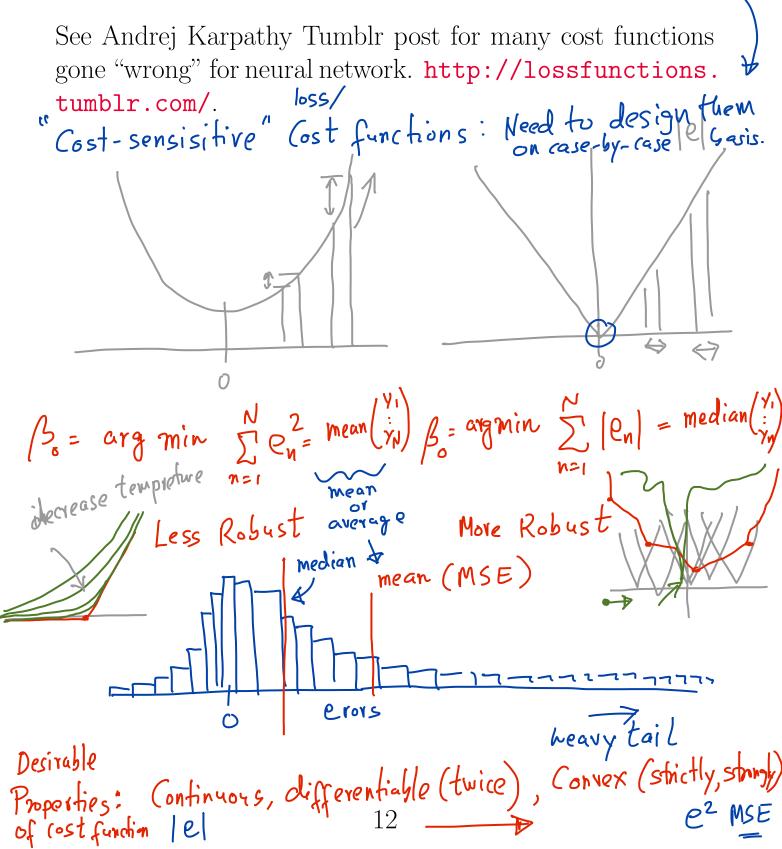
Is there an automatic way to define loss functions?

·/DD

20

1+

Nasty cost functions: Visualization



Algorithm 1: Gradient Descent 5

Learning/estimation/fitting

Given a cost function $\mathcal{L}(\boldsymbol{\beta})$, we wish to find $\boldsymbol{\beta}^*$ that minimizes the cost:

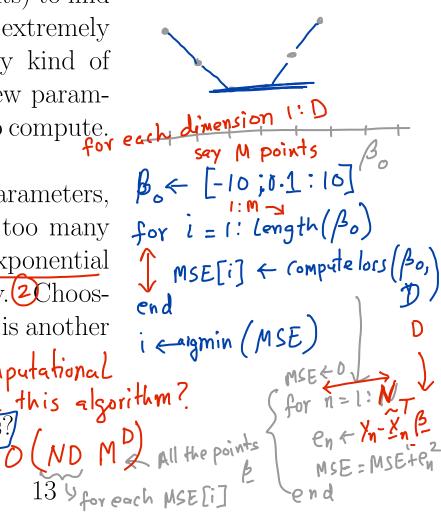
 $\min_{\boldsymbol{\beta}} \mathcal{L}(\boldsymbol{\beta}), \quad \text{subject to } \boldsymbol{\beta} \in \mathbb{R}^{D+1}$

mization problem. We will use an $\mathcal{O}(\mathcal{F}, \beta_1) = \frac{1}{2N} \sum_{n=1}^{N} (\gamma_n - \beta_n - \beta_n \gamma_{n_1})$ $\begin{aligned} & \mathcal{L} \begin{pmatrix} \begin{pmatrix} \beta_{0} \\ R_{r} \\ \vdots \\ \beta_{D} \end{pmatrix} \end{pmatrix} = \frac{1}{2N} \sum_{\substack{n=r \\ P = r}}^{N} \begin{pmatrix} Y_{n} - \tilde{X}_{n} & \beta_{-} \end{pmatrix}^{2} \\ & \mathcal{L} \begin{pmatrix} \beta_{-} \end{pmatrix} \end{pmatrix} \\ & \mathcal{L} \begin{pmatrix} \beta_{-} \end{pmatrix} : \mathbb{R}^{D+1} \rightarrow \mathbb{R} \end{aligned}$ algorithm to solve the problem.

Grid search

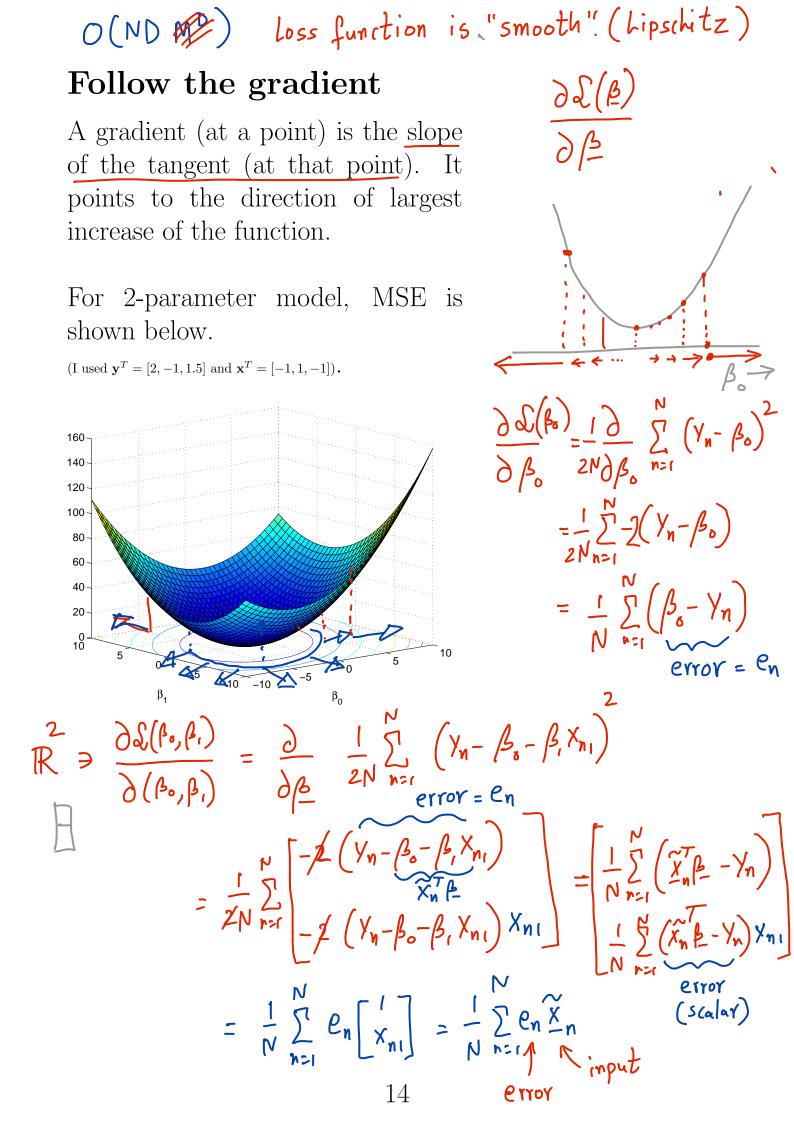
Grid search is one of the simplest algorithms where we compute cost over a grid (of say M points) to find the minimum. This is extremely simple and works for any kind of loss when we have very few parameters and the loss is easy to compute.

For a large number of parameters, however, grid search has too many "for-loops", "resulting in exponential computational complexity. Choosend ing a good range of values is another problem. What is the computational <u>complexity of</u> this algorithm? Are there any other issues Look into Wikipedia 13 y for each MSE [i] (big-Onotation)



 $d(\beta_0) = \frac{1}{2N} \sum_{n=1}^{N} (\gamma_n - \beta_0)^2$

/ (Yn-B.)



Batch gradient descent

To minimize the function, take a step in the (opposite) direction of the gradient

$$\frac{\boldsymbol{\beta}^{(k+1)}}{\mathsf{NeW}} \leftarrow \underbrace{\boldsymbol{\beta}^{(k)}}_{\text{(urrent)}} - \underbrace{\boldsymbol{\alpha}}_{=} \frac{\partial \mathcal{L}(\boldsymbol{\beta}^{(k)})}{\partial \boldsymbol{\beta}}$$

where $\alpha > 0$ is the step-size (or learning rate). We want the sequence $\beta^{(0)}\beta^{(1)}\beta^{(2)}\dots$ Gradient descent for 1-parameter model to minimize MSE:

$$\beta_0^{(k+1)} = (1-\alpha)\beta_0^{(k)} + \alpha \bar{y}$$

Where $\bar{y} = \sum_{n} y_n / N$. When is this sequence guaranteed to converge? (for what value of \propto ?) (for what value of \propto ?)

Gradients for MSE

$$\mathcal{L}(\boldsymbol{\beta}) = \frac{1}{2N} \sum_{n=1}^{N} (y_n - \widetilde{\mathbf{x}}_n^T \boldsymbol{\beta})^2$$

then the gradient is given by,

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}} = -\frac{1}{N} \sum_{n=1}^{N} (y_n - \widetilde{\mathbf{x}}_n^T \boldsymbol{\beta}) \widetilde{\mathbf{x}}_n$$

What is the computational complexity of batch gradient descent?

15

t
$$\partial \underline{\lambda}(\underline{\beta})$$

 $\partial \underline{\beta} = \underline{\beta}(\underline{\beta})$
 ∂

When N is large, choose a random pair (\mathbf{x}_i, y_i) in the training set and approximate the gradient:

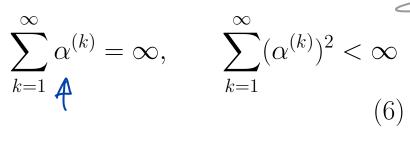
$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}} \approx -\frac{1}{N} \left[N(y_i - \widetilde{\mathbf{x}}_i^T \boldsymbol{\beta}) \widetilde{\mathbf{x}}_i \right] \quad (5)$$

Using the above "stochastic" gradi- Assumption: i.i.d. over n ent take a stor. ent, take a step:

$$\boldsymbol{\beta}^{(k+1)} = \boldsymbol{\beta}^{(k)} + \alpha^{(k)} (y_i - \widetilde{\mathbf{x}}_i^T \boldsymbol{\beta}^{(k)}) \widetilde{\mathbf{x}}_i$$

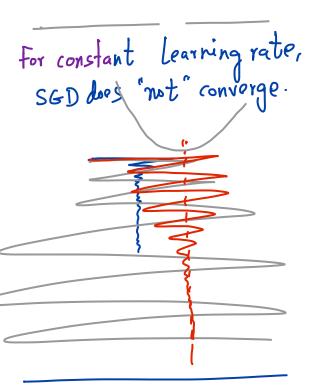
What is the computational complexity?

For convergence, $\alpha^k \rightarrow 0$ "appropriately". One such condition called Robbins-Monroe condition suggests to take α^k such that:



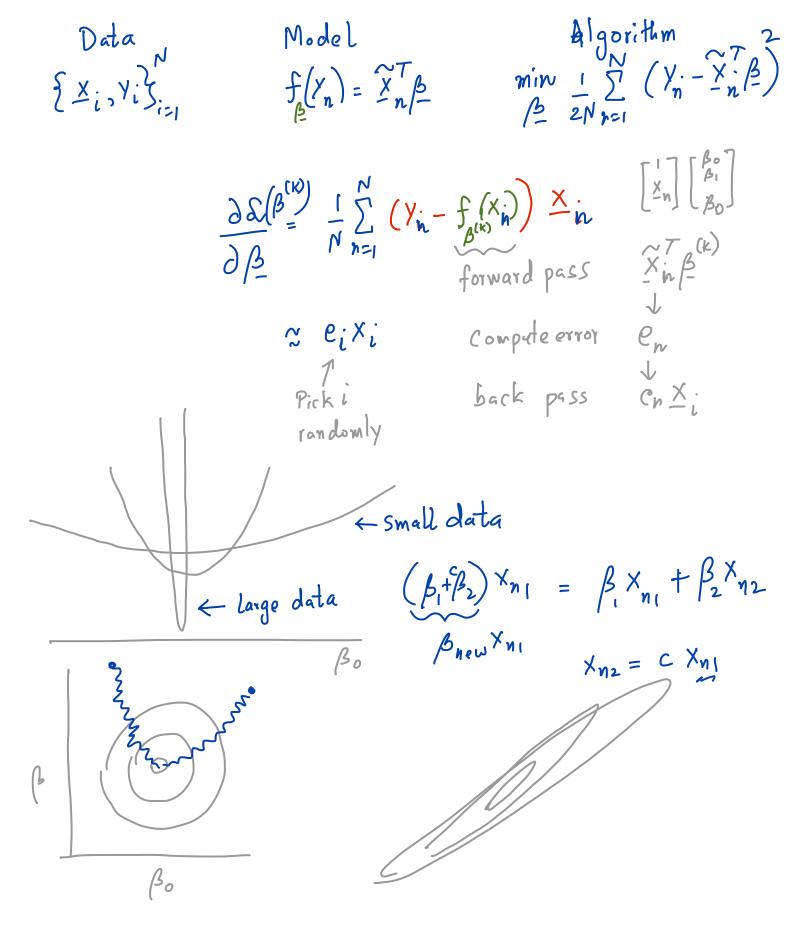
One way to obtain such sequence is $\alpha^{(k)} = 1/(1+k)^r$ where $r \in (0.5, 1)$. $\begin{cases} r = 2 \\ r = 0.4 \end{cases}$

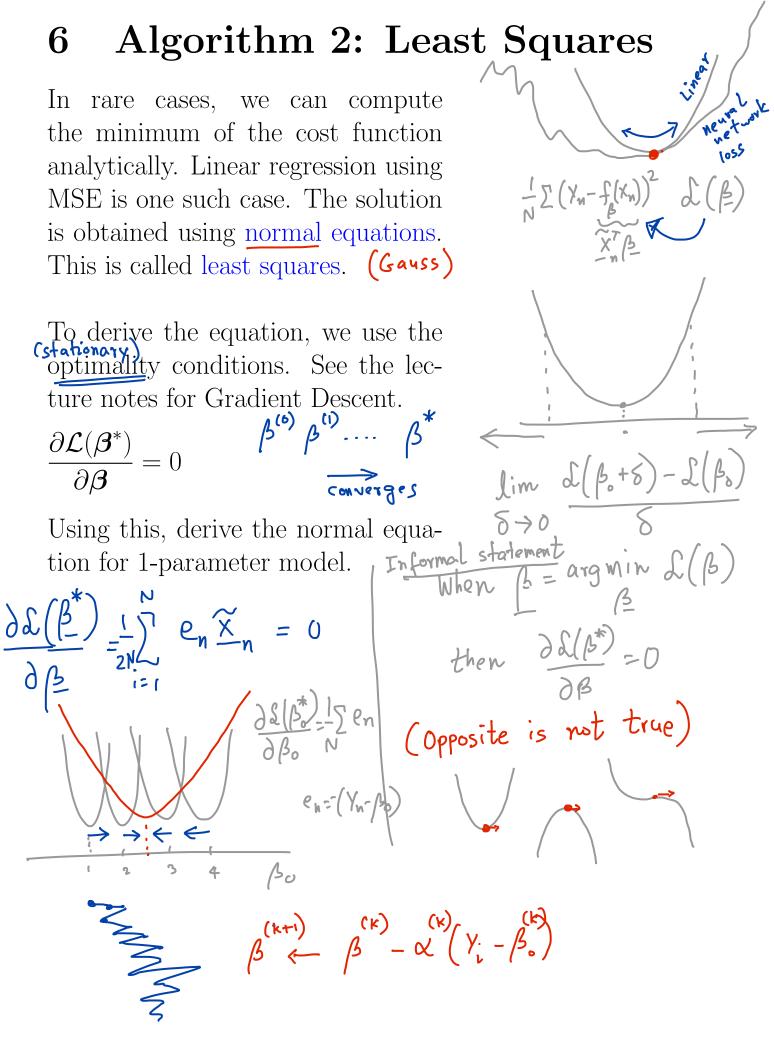
 $= \frac{1}{N} \frac{N \times e_i X_i}{N}$ $= e_i X_i \quad \Box H :$ H D



$$\mathcal{A}$$
 (constant

$$\sum \alpha^{(k)} = 0^{0}$$
$$\sum (\alpha^{(k)})^{2} < 0^{0}$$





Normal equations

Recall the expression of the gradien for multiple linear regression:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}} = -\frac{1}{N} \widetilde{\mathbf{X}}^T \mathbf{e} = -\frac{1}{N} \widetilde{\mathbf{X}}^T (\mathbf{y} - \widetilde{\mathbf{X}} \boldsymbol{\beta})$$

Set it to zero to get the normal equa tions for linear regression.

$$\widetilde{\mathbf{X}}^T \mathbf{e} = \widetilde{\mathbf{X}}^T (\mathbf{y} - \widetilde{\mathbf{X}} \boldsymbol{\beta}) = 0$$

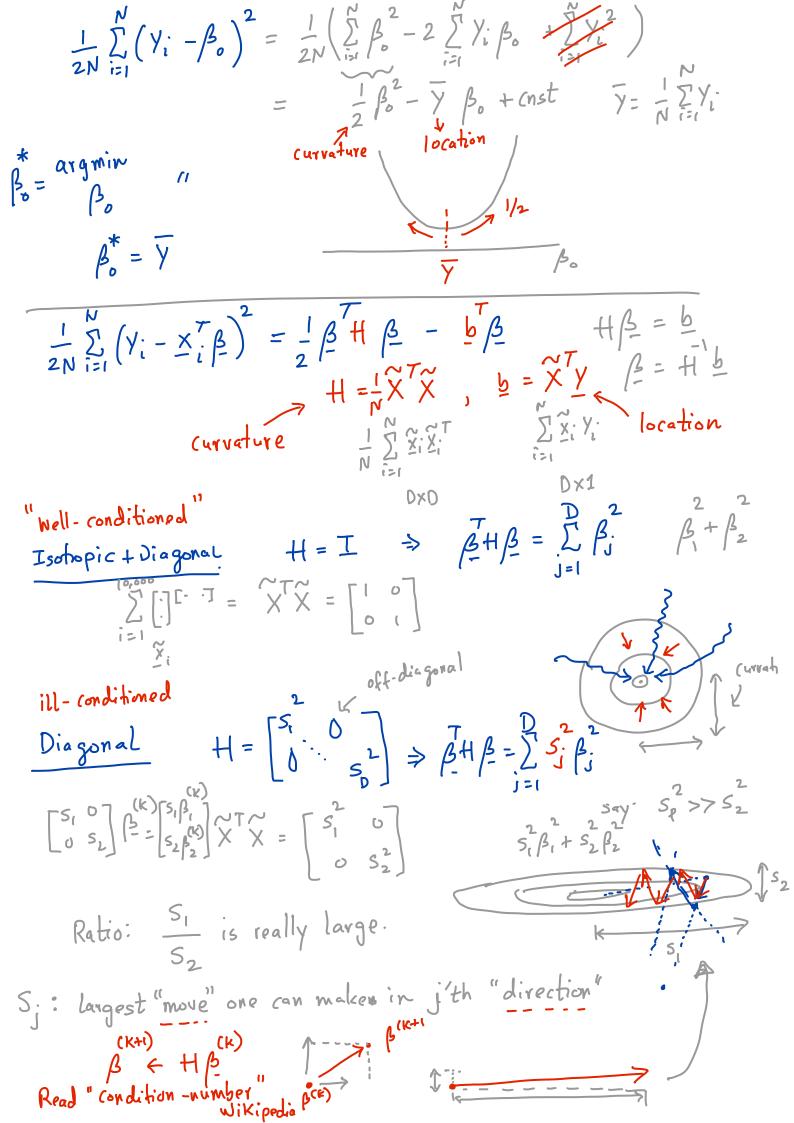
implying that the error is orthogona to rows of $\widetilde{\mathbf{X}}^T$ and columns of $\widetilde{\mathbf{X}}$.

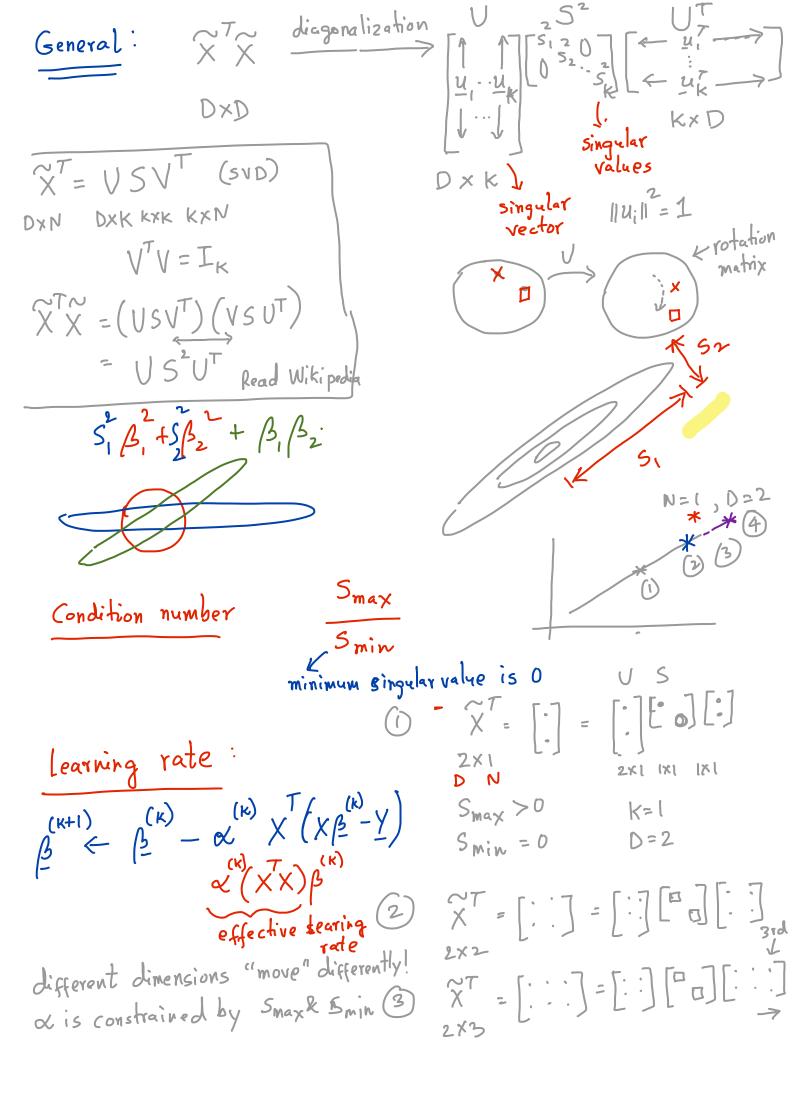
$$\begin{bmatrix} \ddots & \mathcal{T} \\ \vdots \\ \vdots \\ \ddots \\ \mathbf{X}_{N} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{X}_{111} & \mathbf{X}_{12} & \cdots & \mathbf{X}_{1D} \\ \mathbf{1} & \mathbf{X}_{21} & \mathbf{X}_{22} & \cdots & \mathbf{X}_{2D} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{1} & \mathbf{X}_{N1} & \mathbf{X}_{N2} & \cdots & \mathbf{X}_{ND} \\ \mathbf{N} & \mathbf{X} & \mathbf{D} \end{bmatrix}$$

$$e_{1}\begin{bmatrix}1\\\chi_{11}\end{bmatrix}=0$$

× =

$$\left(\underbrace{\beta_{0}+\beta_{1}\chi_{1}-Y_{1}}_{e_{1}=0}\right)=0$$





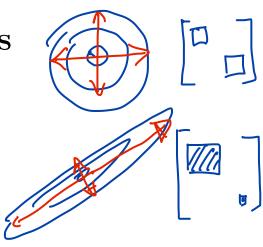
2 D

2×2

Invertibility and uniqueness

The Gram matrix $\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}}$ is invertible iff $\widetilde{\mathbf{X}}$ has full column rank.

Proof: Assume N > D. The fundamental theorem of linear algebra states that the dimensionality of null space is zero for full column rank. This implies that the Gram matrix is positive definite, which implies invertibility.



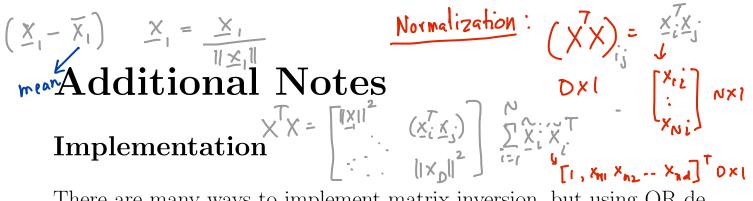
Rank deficiency and ill-conditioning

Unfortunately, $\widetilde{\mathbf{X}}$ could often be rank deficient in practice, e.g. when D > N, or when the columns $\overline{\mathbf{x}}_d$ are (nearly) collinear. In the later case, the matrix is ill-conditioned, leading to numerical issues.

Summary of linear regression

We have studied three methods:

- 1. Grid search
- 2. (Stochastic) gradient descent
- 3. Least squares



There are many ways to implement matrix inversion, but using QR decomposition is one of the most robust ways. Matlab's backslash operator implements this (and much more) in just one line.

```
1 beta = inv(X'*X) * (X'*y)
2 beta = pinv(X'*X) * (X'*y)
3 beta = (X' \star X) \setminus (X' \star y)
```

For robust implementation, see Sec. 7.5.2 of Kevin Murphy's book.

To do

- K=D or N (none of Sj are 0 1. Revise linear algebra to understand why $\widetilde{\mathbf{X}}$ needs to have full $\boldsymbol{\varsigma}$ rank. Read the Wikipedia page on rank of a matrix.
- 2. For details on the geometrical interpretation, see Bishop 3.1.2. incinite However, better to read this after the lecture on "basis-function " expansion". Also, note that notation in the book is different. This might make the reading difficult.
- 3. Understand matrix inversion robust implementation and play with it using the code for labs. Read Kevin Murphy's section 7.5.2 for details.

- 4. Understand ill-conditioning. Reading about the "condition number" in Wikipedia will help. Also, understanding SVD is essen-Here is another link provided by Dana Kianfar (EPFL) tial. http://www.cs.uleth.ca/~holzmann/notes/illconditioned.pdf.
- 5. Work out the computational complexity of least-squares (use the Wikipedia page on computational complexity).

Challenge: Overfitting 7

ß.

well

(ord

al

(ond.

 $\gamma_n \approx \beta_0 \cdot 1$

Xn=C, a constant We expect in 2D

Suppose

Yn B.1+BC

= Bonew 1

where Bore Bot CBI

Adding more data "may" make the

loss ill-ronditioned

Sinterplay bet N&D's

but what matters is K (rank).

 $\gamma_n \approx \beta_0 \cdot 1 + \beta_1 \cdot z_n$

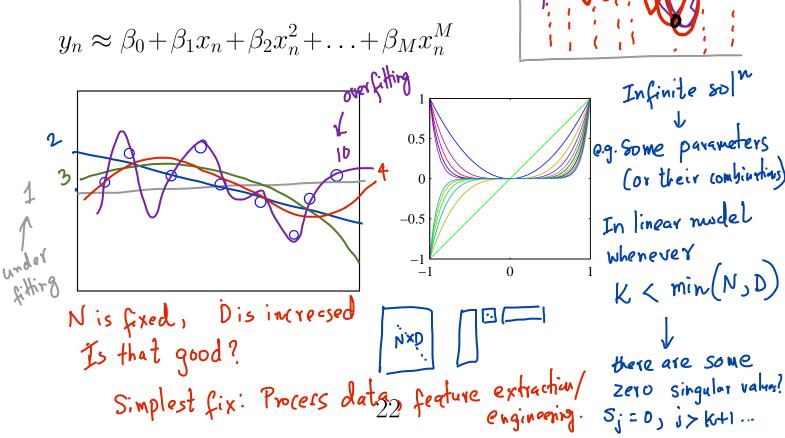
Motivation

Linear model can be easily modified to obtain more powerful non-linear model. We can use basis function expansion to get a non-linear regression model, and then use a sequence of these models to construct a deep model.

Consider simple linear regression. Given one-dimensional input x_n , we can generate a polynomial basis.

$$\boldsymbol{\phi}(x_n) = [1, x_n, x_n^2, x_n^3, \dots, x_n^M]$$

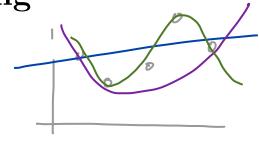
Then we fit a linear model using the original and the generated features:

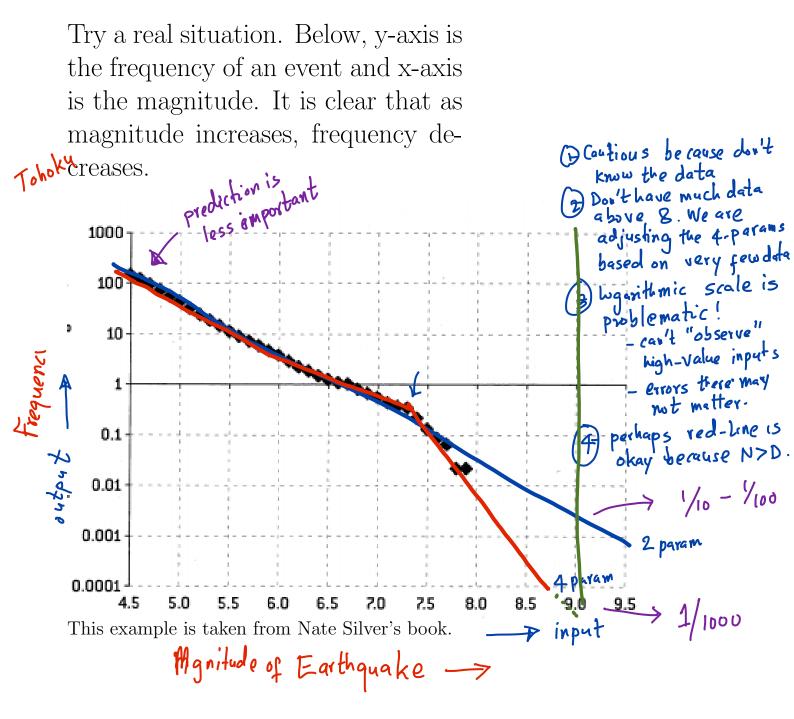


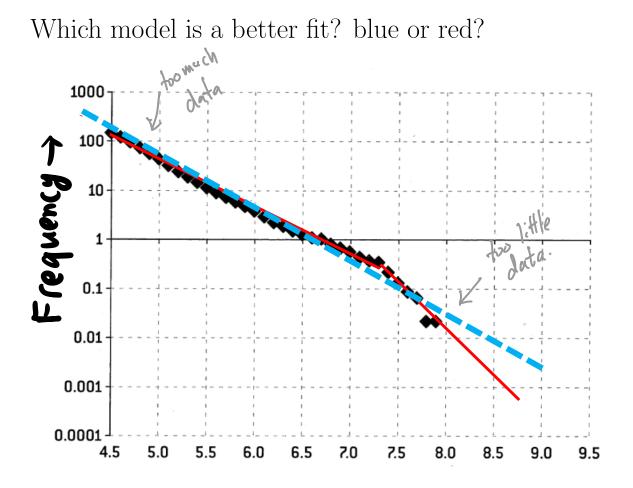
Overfitting and Underfitting

Overfitting is fitting the noise in addition to the signal. Underfitting is not fitting the signal well. In reality, it is very difficult to be able to tell the signal from the noise.

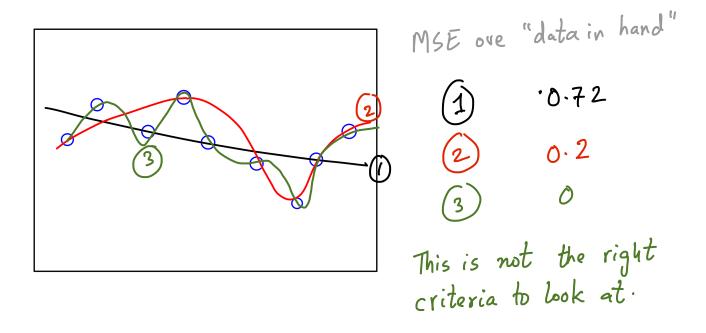
Which is a better fit?





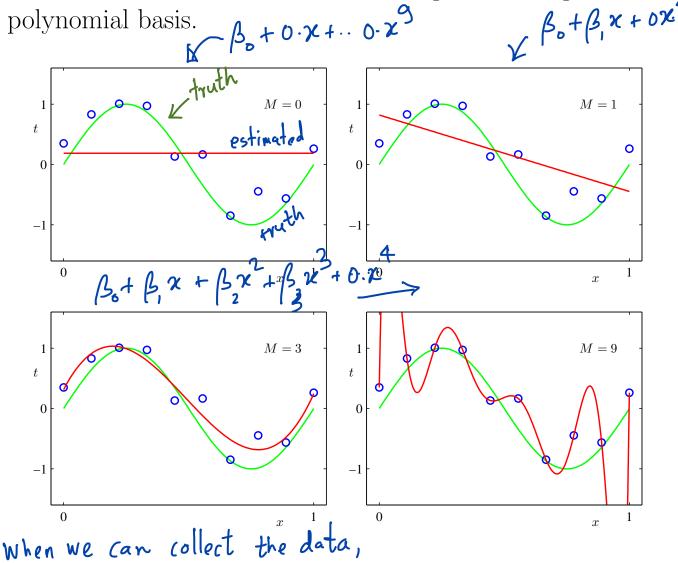


Another example: Which model is a better fit? black or red? Data is denoted by circle.

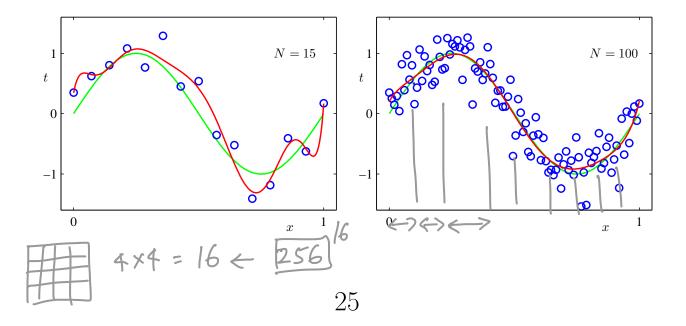


Complex models overfit easily (^{see} Bishop)

Circles are data points, green line is the truth & red line is the model fit. M is the maximum degree in the generated polynomial basis. $A + 0 \times t + 0 \times t^{2}$



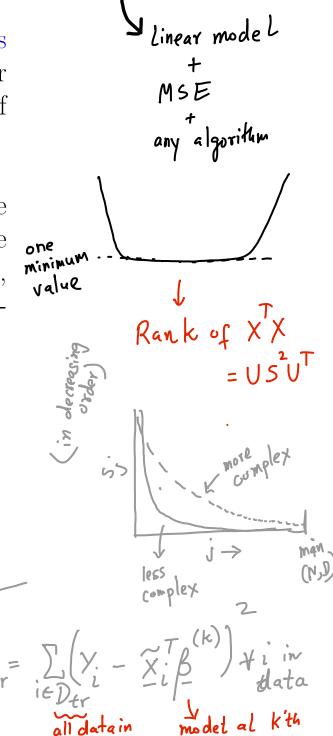
If you increase the amount of data, overfitting *might* reduce.



Occam's razor

One solution is dictated by Occam's razor which states that "Simpler models are better – in absence of certainty."

Sometimes, if you increase the amount of data, you might reduce overfitting. But, when unsure, choose a simple model over a complicated one.



Complexity

Additional Notes

high

1 anance

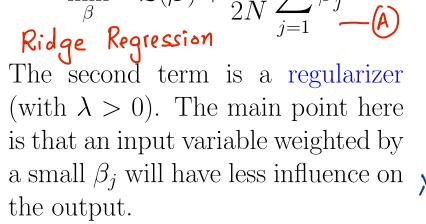
Read about overfitting in the paper by Pedro Domingos (section 3 and 5 of "A few useful things to know about machine learning"). You can also read Nate Silver's book on "The signal and the noise" (the earthquake example is taken from this book).

Complex model -> ill-conditioning -> Overfitting

Solutions: Regularization 8

What is regularization?

Through regularization, we can penalize complex models and favor simpler ones:



Regularization Parameter

reduce overfitting. But, how do you τ choose λ ? Write the SUD of X = USV &: Why simples "features are favoured?" $(\lambda) = (\chi \chi + \lambda I) \chi \chi$ **The generalization or nor** The generalization error of a learning method is the expected prediction error for 'unseen' data, i.e. mistakes made on the data that we are

going to see in the future. This quantifies how well the method generalizes.

bugh regularization, we can pe-
e complex models and favor
ler ones:
$$\underset{\beta}{\mathsf{MSE}} \qquad \underset{\mathcal{L}(\beta)}{\overset{\mathsf{Regularizer}}{\underset{\beta}{\mathsf{MSE}}} \qquad \underset{j=1}{\overset{\mathsf{Regularizer}}{\underset{\beta}{\mathsf{MSE}}} \qquad \underset{j=1}{\overset{\mathsf{N}}{\underset{\beta}{\mathsf{MSE}}} \qquad \underset{j=1}{\overset{\mathsf{NSE}}} \qquad \underset{j=1}{\overset{\mathsf{NSE}}} \qquad \underset{j=1}{\overset{\mathsf{NSE}}} \qquad \underset{j=1}{\overset{\mathsf{NSE}}} \qquad \underset{j=1}{\overset{\mathsf{NSE}}} \qquad \underset{j=1}{\overset{\mathsf{NSE}}} \qquad \underset{j=1}{\underset{\beta}{\mathsf{MSE}}} \qquad \underset{j=1}{\underset{\beta}{\underset{\beta}{\mathsf{MSE}}} \qquad \underset{j=1}{\underset{\beta}{\underset{\beta}{\mathsf{MSE}}} \atop \underset{j=1}{\underset{\beta}{\underset{\beta}{\atop{MSE}}} \atop \underset{j=1}{\underset{\beta}{\underset{\beta}{\underset{\beta}{\atop{MSE}}} \atop \underset{j=1}{\underset{\beta}{\underset{\beta}{\underset{\beta}{\atop{MSE}}} \atop \underset{j=1}{\underset{\beta}{\underset{\beta}{\underset{\beta}{\underset{\beta}{\atop{MSE}}} \atop \underset{j=1}{\underset{\beta}{\underset{\beta}{\underset{\beta}{\underset{\beta}{\atop{MSE}}} \atop \underset{j=1}{\underset{\beta}{\underset{\beta}{$$

Q2:
$$(' '' , \lambda \rightarrow 0)$$

 $I_{-}^{3*} = \beta_{LS}$
 MSE
 I_{-}^{5}
 $I_{$

Q: How does the conditioning of the problem improved?

60 What is "unseen" data? Tricky to define ... never the less

0

 $XX + \lambda I$ $= USV^{T}VSU^{T} + \lambda I_{D}$ $= USU^{T} + \lambda UU^{T}$ $= U \left(S^{2} + \lambda I \right) U^{T}$ $V S^{2} + \lambda U^{T}$ $\Box P^{2} + \lambda U^{T}$ ĸ×ĸ

Q: Write an expression for the. minimizer of A-1 T $\beta^{*}(\lambda) = (\chi^{T} \chi + \lambda I) \chi' Y$ Q: How does the conditioning of the problem improved? Write the SUD of X=USNT Q: Why "simples" features are favoured

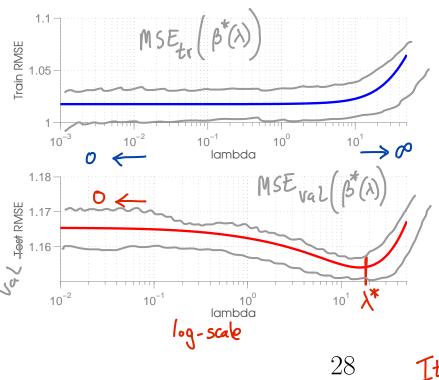
DxK , cond. num. $\rightarrow 1$ 2 $S_{max} + \lambda$ as λ Smax Cond. num. $S_{min}^2 + \lambda$ simpler comple; highting 10w-freq Δ°, <u>u</u> ... <u>u</u> $\begin{array}{c} 1 & 1 \\ \mathbf{x}_{1} & \mathbf{x}_{2} \\ \mathbf{x}_{1}^{2} & \mathbf{x}_{2}^{2} & \cdots \\ \vdots & \mathbf{D} & \mathbf{x}_{2}^{\mathbf{D}} \end{array}$ Polynomial space X_N² X_N · т Х = lower "frequency

Simulating the future

Ideally, we should choose λ to minimize the mistakes that will be made in the future. Obviously, we do not have the future data, but we can always *simulate the future* using the data in hand.

Splitting the data

For this purpose, we split the data \cdot into train and validation sets, e.g. deta 80% as training data and 20% as $12 \cdot 2$ validation data. We pretend that the validation set is the future data. (very simplemodel.) We fit our model on the training set $\lambda \rightarrow 0$ and compute a prediction-error on the validation set. This gives us an estimate of the generalization error $\lambda \rightarrow 0$ (very (one instant of the future).



 $\beta_{s} + \beta_{j} \times + \cdots + \beta_{100} \times 100$ X->P, B; >0 $D_{tr} = \left\{ \sum_{i,j} y_i \right\}_{i=1}^{r}$ training data deta in hand N >0 (very complex model) fit $MSE_{tr}(\beta) = \sum_{i \in D_{r}} (Y_i - \widetilde{X}_i) \beta$ NSE Val (b)=.

 $\beta^{*}(\lambda) = \min_{\beta} MSE_{f}(\beta) + \frac{\lambda}{2} \beta^{T} \beta^{T}$

Q: How should we choose the split? A: randomly ? but we should be careful. It should be "representive" of the problem/data.

Cross-validation

Random splitting (aka bootstrap) is not an efficient method.

erd Random shuffling is not efficient! K-fold cross-validation allows us to do this efficiently. We randomly partition the data into K groups. We train on K-1 groups and test 111111 on the remaining group. We re-Validation sets are disjoint! peat this until we have tested on all Estimates of tal Error is a bit betler (low variance) Kasets. We then average the results. but it's biased. run 1 shuffle and * Split in K subsets run 2 $*\lambda = [10^{-5} 10^{-4} \dots 10^{3}]$ run 3 * for all λ run 4 for k= 1: K Fit model Train test on the Validation MSE_{Val}[K]

for s = 1,, 100

evalute

shuffle the data

pick the first x ? as frain

 $MSE_{Val}(\beta'(\lambda))$

 $MSE_{val} = mean MSE_{val}$

Cross-validation returns an estimate of the generalization error.

Additional Notes

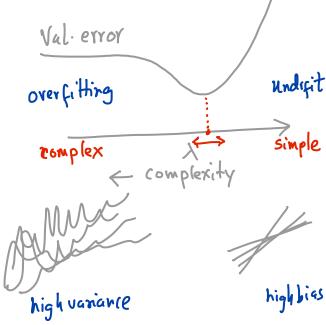
Details on cross-validation are in Chapter 7 in the book by Hastie, Tibshirani, and Friedman (HTF). You can also read about bootstrap in Section 7.11 in HTF book. This method is related to random splitting and is a very popular method.

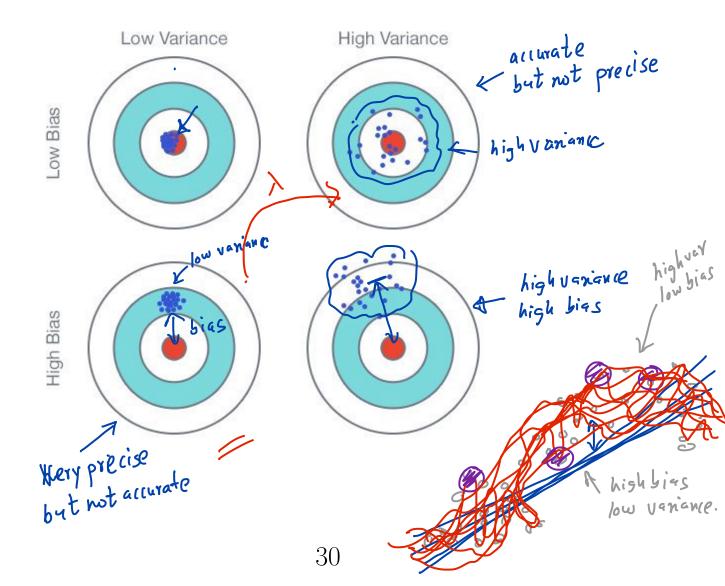
9 Bias-Variance Decomposition

What is bias-variance?

One natural question is how does the test error vary wrt λ ? When λ is high, the model underfits, while when λ is small, the model overfits. Therefore, a good value is somewhere in between.

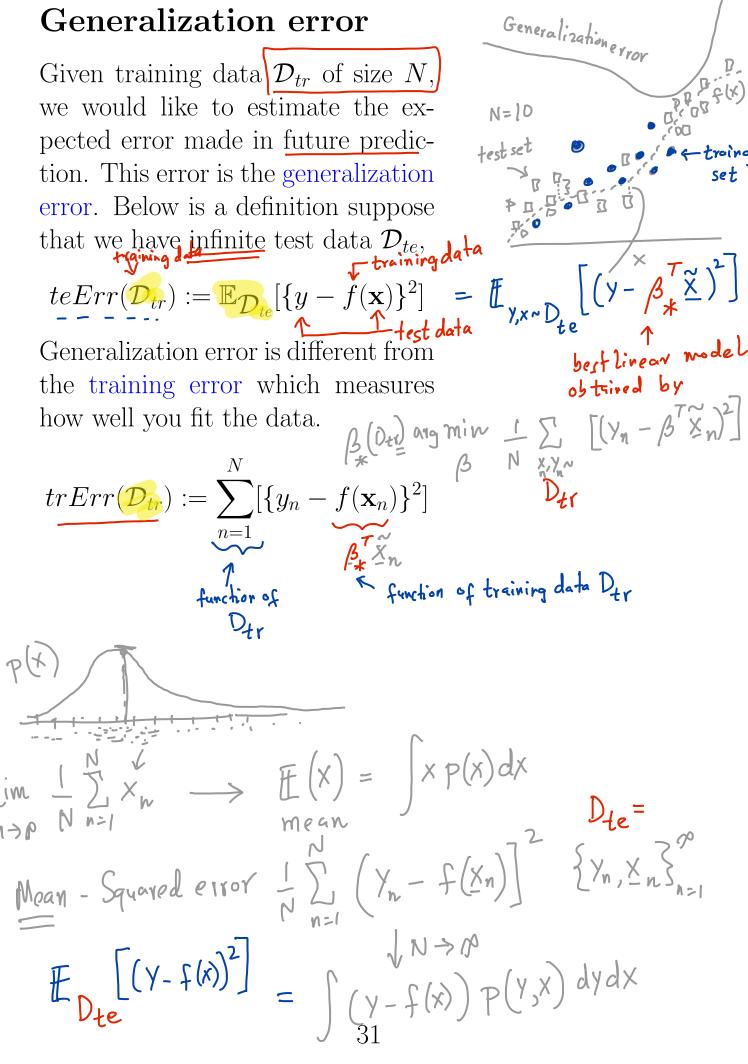
Bias-variance decomposition plains the shape of this curve.





ex-

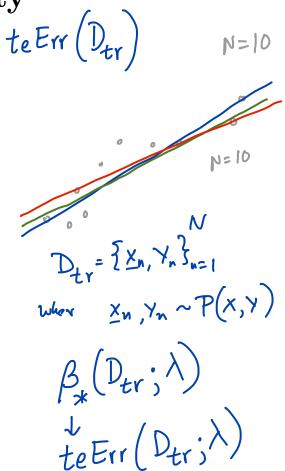
Generalization error

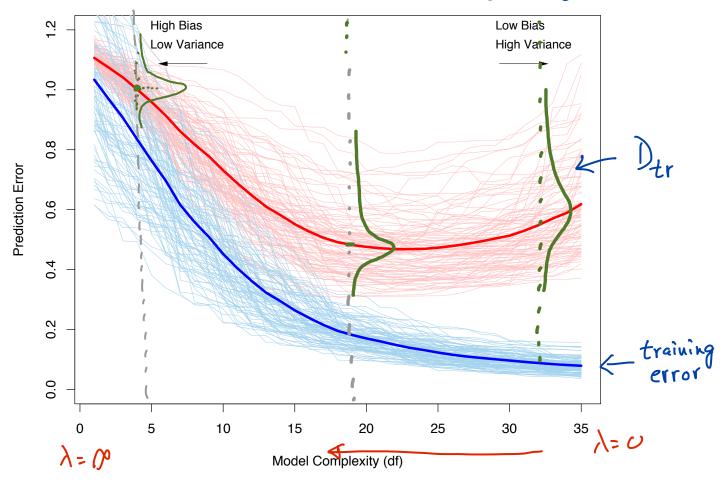


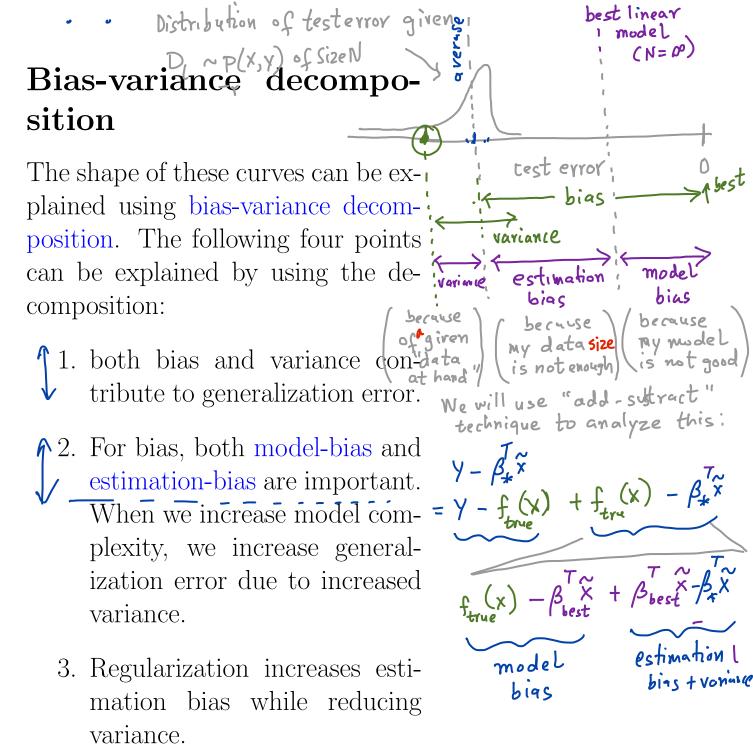
Errors vs model complexity

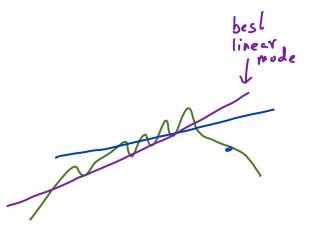
As we increase the model complexity, how do these errors vary? The blue line shows training error for a dataset with N = 50, while the red line shows the generalization error for that dataset.

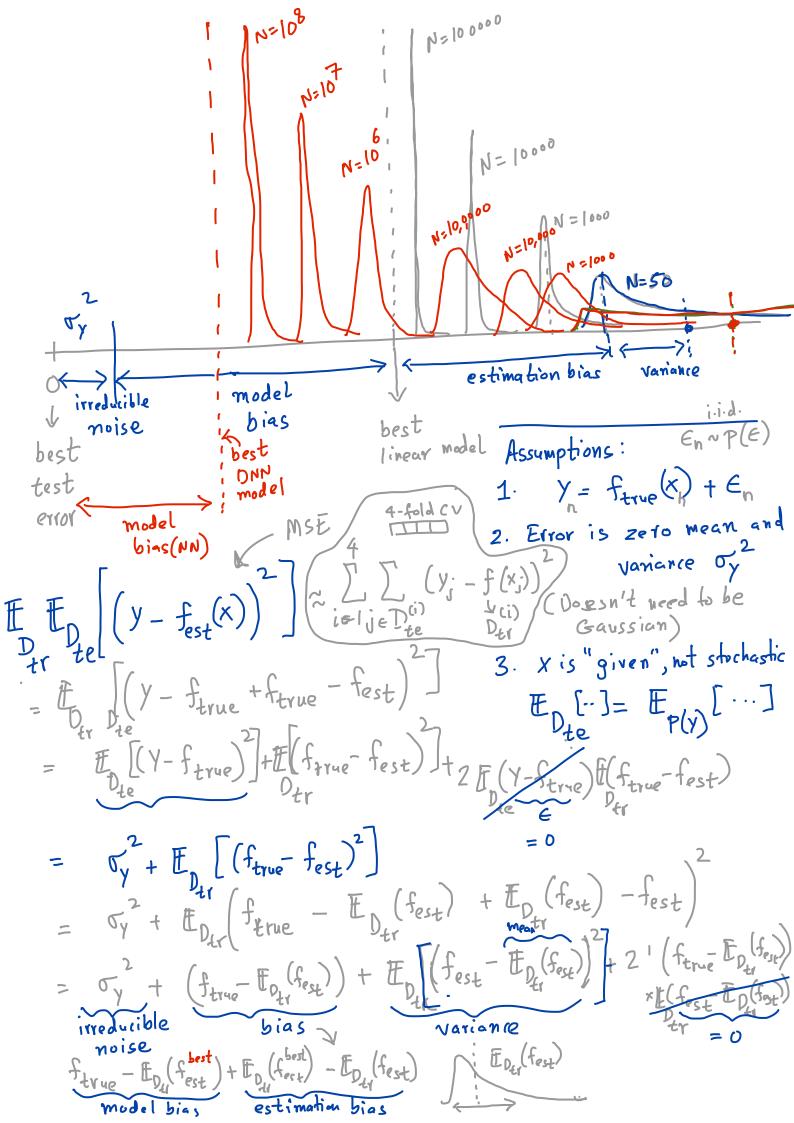
Simple model have high train and generalization error since they have a high bias, while complex model have low train but high generalization error because they have high variance.

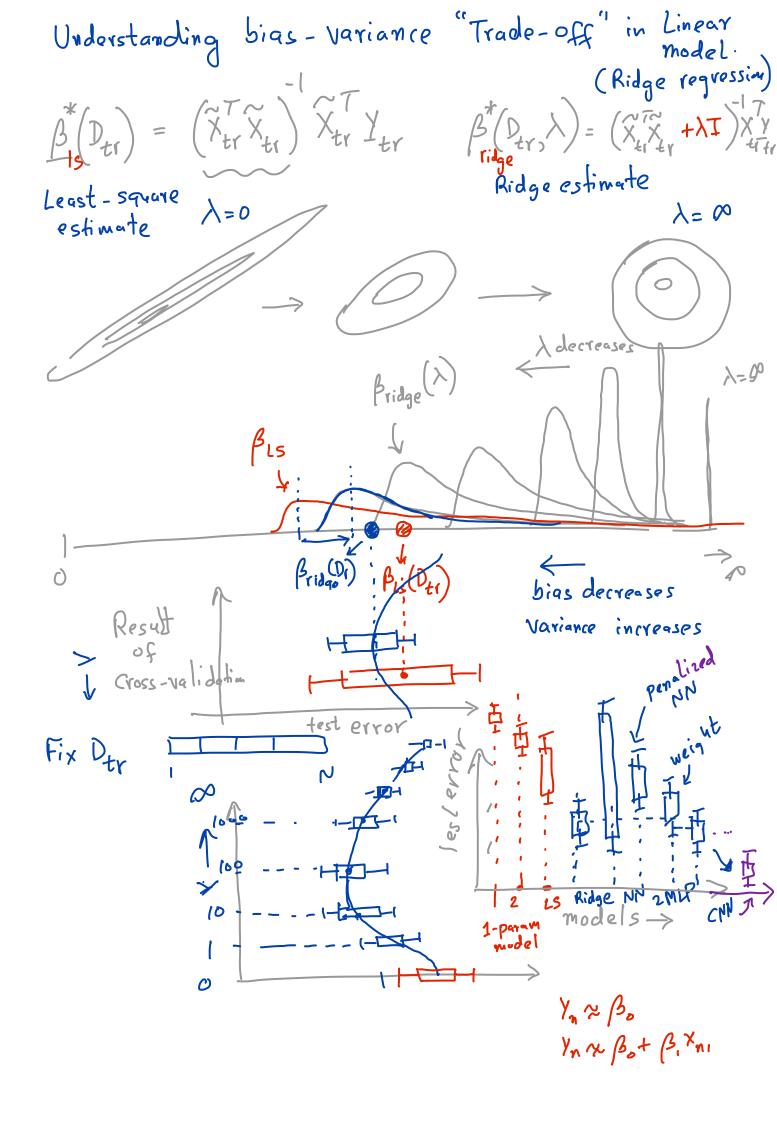












10 Recent Advances Deep Learning & Overfitting

Deep learning has shown a new (but old) way to combat overfitting. For many applications, more data and deep architecture combined with stochastic gradient-descent is able to get us to a good minimum which generalizes well.

Challenges

There are many challenges ahead. Learning from nasty, unreliable data still remains a challenge (e.g. small sample size, redundant data, non-stationary data, sequential learning).

On the other hand, living beings even young ones - are very good in dealing with such data. How do they do it, and how can we design ML methods that can learn like them?