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Goals

• By the end of this part, you should be able to
– Describe the goal this course
– Summarize what you will learn
– Understand the course evaluation
– Know the pre-requisite for the course and prepare 

yourself for the exciting times ahead
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Course Goals

• Explain a few methods for Regression and 
Classification.

• Implement and apply these methods to real 
data.

• Discuss fundamental principles of machine 
learning.

• Create an assessment of current skill level, 
and devise a plan for ongoing learning. 
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(A rough) Outline of the Course
• Week 1 (online): Intro + regression (linear models)
• Week 2 (online): (Stochastic) gradient descent, Newton's method, 
• Week 3 (online): Overfitting, cross-validation, bias-variance decomposition

– Project starts
• Week 4 (online): Classification: Logistic regression
• Week 5 (online): Classification: Support vector machines
• BREAK FOR PROJECTS
• Week 10 (online): Deep Learning methods
• Week 11 (online/in-person): Gaussian Process Regression and 

Classification
• Week 12 (in-person): Machine Learning from a Bayesian Perspective
• Week 13 (in-person): Machine Learning from a Bayesian Perspective,

– Project ends
• Week 14 (in-person): Recap and project presentations
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Course Schedule
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• 10 week lectures
– Tu, Wed (1-3pm), 

1h30m, with many 
discussions/breaks

– Summary due 
every 2 weeks of 
lecture on Fridays.

• 10 week project
– Starts in week 4 

(June 6) 
– Ends on week 13 

(Aug12)
– Presentation on 

Aug. 16-17

Project starts

Lecture starts

Project presentation
Project ends

Summary due

Summary due

Summary due

Summary due



Course Evaluation
• [40%] Class summary

– Students will summarize every two weeks of lecture in their own 
words (a total of 5 such reports). This needs to be a summary based 
on understanding and can be as short as 2 pages.

• [40%] Project report and presentation: 
– 10 week project
– Define a good project (should involve applying ML methods on a real-

world problem/data, and report the findings)
– students will submit a final project report in Week 13, and present 

their work in Week 14. 
– The grading will be based on constructive feedback from the class on 

the project and presentation.
• [20%] Class participation

– Participate in in-class quizzes and discussions
• Due dates are always on Fridays at noon JST.
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The Teaching Team

• We will hold office hours on request 
• Please ask the day before earlier 

than 5pm JST.  Then we will then 
announce the session in slack.
– Emti: 5-5:30pm on May 17, 31, June 

14, 28, July 12, 26, Aug. 9 
– Tom: 12-1:30pm on May 23, June 6, 20
– David: Office hours in June and July, 

when requested
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Thomas Burns 
(https://tfburns.com/)

David Pere Tomas Cuesta
(david.tomas@oist.up)

https://tfburns.com/
http://oist.jp


Resources
• Course Webpage
– https://emtiyaz.github.io/teaching/oist_B39_2022/main.ht

ml
– Join the course Slack (if you haven’t joined yet, send us a 

request by email and we will send an invite link).
• Lecture notes
– During the lectures, I will use lecture notes (with blank 

space for you to take note if you want).
– These will be available on the course webpage 

beforehand. 
– You can either print them or use a tablet to annotate
– An annotated copy (with my annotations from the class) 

will be available after the lecture. 
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Books (for reference only)

• T. Hastie, R. Tibshirani and J. Friedman: Elements of 
statistical learning 
– http://statweb.stanford.edu/~tibs/ElemStatLearn/

• C. Bishop: Pattern Recognition and Machine Learning
– https://www.microsoft.com/en-

us/research/publication/pattern-recognition-machine-
learning/

• K. Murphy: Machine Learning: A Probabilistic 
Perspective 
– https://probml.github.io/pml-book/book1.html
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What not to expect!
• You will not learn ALL advanced methods.
• You will not learn ALL the details. 
• This course is not about big data or largescale methods. 
• This is not a course about numerical optimization, neither is 

it about statistics. We will use both of these and learn basic 
techniques only. 

• We will not teach the pre-requisite for ML. You have to 
learn that on your own, but we are happy to hold office 
hours to help you through them

• This course does not teach you all that you need to know to 
be able to apply machine learning, but this course will get 
you started for sure
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Prerequisite (must know)

• Matrix calculus. 
– How to take derivative with respect to vectors and 

matrices.
• https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
• https://en.wikipedia.org/wiki/Matrix_calculus

– You can learn more about it from wikipedia or Matrix 
Cookbook
• http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3274/ 

pdf/imm3274.pdf

• Basic Probability
– Normal distribution
– Read Chapter 2 in Bishop’s book on Machine Learning
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Prerequisite (must know)

• Matrix algebra. 
– Basics: Vector and matrix multiplication, 
(https://en.wikipedia.org/wiki/Matrix_multiplication)

– More advance topics (see Wikipedia): Matrix 
inversion and determinants, rank, null and range 
space, eigenvalue decomposition. 

– There is also a handout posted on the course 
webpage.

12



Goals

• By the end of this part, you should be able to
– Describe the goal this course
– Summarize what you will learn
– Understand the course evaluation
– Know the pre-requisite for the course and prepare 

yourself for the difficult times ahead
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