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1 Introduction

We will consider Bayesian inference
in the context of supervised learning.
Bayesian inference involves com-
putation of posterior distribution,
which is fundamentally different
from the maximum-likelihood prin-
ciple.  We will demonstrate this
on four models: linear regression,
logistic regression, Neural networks,
and Gaussian process.

By using the posterior distribution,
Bayesian inference can reduce over-
fitting, represent uncertainty, and
perform model selection.

Unfortunately, Bayesian inference
involves a difficult integral which in-
volves computing an average over
all possible explanations of the data.
We will learn about some of the rea-
sons behind this difficulty. Approx-
imate Bayesian inference addresses
this problem by finding approxima-
tions to the integral



2 Regression and Classification

Regression /classification is to relate
input variables to the output vari-
able, to predict outputs for new in-
puts and /or to understand the effect
of the input on the output.

Dataset for regression

The data, denoted by D, consist of
pairs (X,,, ¥, ), where x,, is a vector of
D inputs and y,, is the n’th output.
Number of pairs N is the data-size
and D is the dimensionality.

Prediction

In prediction, we wish to predict
the output for a new input vec-
tor, i.e., find a regression function
that approximates the output “well
enough” given inputs.

Un = fu(Xy), forall n

where w is the parameter of the re-
gression model.



3 Maximum Likelihood

Assume vy, to be independent sam-
ples from an exponential-family
distribution, whose expectation pa-
rameter is equal to f,(x,):

D‘W = Hp ynlfw Xn )

The function p(D|w) is the likeli-
hood, which can be maximized to
obtain a “good enough” w

Ly (w) = log p(D]w).

This 1s known as the maximum-
likelihood estimation.
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Two-parameter model.
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4 Maximum A Posteriori (MAP)

To avoid overfitting, we can use
a regularizer logp(w) to perform
maximuin a posteriori estimation,

Liyrap(w) :=logp(D|w) + log p(w).

Note that not all regularizers corre-
spond to a probability distribution.

We can view p(w) as a prior distri-
bution to get the joint distribution:

p(D,w) = p(D|w)p(w),
= p(w|D)p(D).

5 The Posterior Distribution

The posterior distribution is defined
using the Bayes’ rule:

~ p(Dlw)p(w)
PV IP) = Dlw)p(w)dw

The integral p(D) is the normal-
izing constant, also known as, the
marginal likelihood. Without it, we
do not know the true spread of the
distribution, which gives us a notion
of uncertainty or confidence.
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Example: One-Parameter Model




Posterior of a One-Parameter Model

__ p(Djw)p(w)
PP = T Dl p(w)w
[1, N (g, 1)] M (a0, 1)
p(wo|D) = N :
J [T A (g, 1)] N o0, D

Question:Derive the posterior distribu-

tion and the marginal likelihood.




Example: Two-Parameter Model

likelihood prior/posterior data space
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Figure taken from | ]



Example: Two-Parameter Model

__ p(Dlw)p(w)
YD) = ToDiwipwiw
LN (ol + i, 1) N (w]0,T)
p(w|D) =

ST N gl + wnz, 1)] N (w]0, Tdw

Question:Derive the posterior distribu-

tion and the marginal likelihood.

10



6 Bayesian Linear Regression
Consider f,(x,) = w'o(x,),

(where ¢(-) is a nonlinear function)
with the following joint distribution,

p(D,w) = [H N (ynl fu(xn), 1)] N (w0, AL).

Question:Derive the posterior distribu-

tion and the marginal likelihood.

Question:When is the computation of
the posterior distribution difficult?

The predictive distribution is,

p(y[x., D) = / N (gl ul.), Dp(w|D)dw,
= W (T b(x.), 1+ d(x) V()
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Example of Predictive Distribution

From [Bishop, 2006] Figure 3.8.
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7 Bayesian Logistic Regression

When y, € {0,1}, we can use a
Bernoulli distribution,

p(D,w) = H Ber(yn| fu(xn)) | N(w|0, AL,

w=(0,2) Figure taken from [ ]




2D Example

Probability of parameters

Likelihood

Data set

2

2

7 2
i

g

T TFFFFFTFH
e e e
e e e
A7

t 2
=
&«uﬂﬂ%ﬂﬁﬂ.
AN

X tfflﬁfﬂﬁnﬂﬂﬂﬂﬂﬂ

(constant)

wi

w2

@

wi

-10

-10

14



Posterior Distribution

The posterior distribution is,
p(w|D) =
The marginal-likelihood is,

p(D) =

There is no closed-form solution.
This is because the likelihood 1is
not conjugate to the Gaussian prior.
That is, with respect to w, the like-
lihood cannot be expressed in the
same form as the prior.

Predictive Distribution

The predictive distribution is in-
tractable too,

p(y,[x., D) = / Ber(y.| fu(3.))p(w|D)dw.

Figure taken from | ]
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The prediction uncertainty is use-

ful to avoid “overconfident” decision
boundary found by a MAP method.
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8 Deep Neural Networks

These difficult become much worse
with deep models.

fw(Xn) — fl(wle(WQ “ e fL(WLXn)>)
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Nonconvexity translates to a multi-
modal posterior distribution, whose
marginal-likelihood is a massive,
intractable integral.

Three computational challenges:
1) Too many factors (large N)

2) Too many dimensions (large D)
3) Nonconjugacy
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9 (Gaussian Processes

Instead of assigning a Gaussian prior
to w, we can directly apply an infor-
mative prior on f,(x) using Gaus-
sian process, which is defined us-
ing a kernel matrix Ky with entries
ki; = k(x;,x;) where @ are kernel
hyperparameters, e.g.,

kij = ¢(Xz‘)T¢<Xj>-

We can then directly sample N func-
tion values f = [f1, fo, ..., fn] from
a (Gaussian-process prior:

p(f|1 X, 0) = N(f|0,Ky).

No need for w! Combining it with a
likelihood, we get GP models.

A good text is | ]

17



2D Example

Consider square-exponential kernel:

1
kij = 0? exXp <_2_l||XZ — XjHQ) a

along with a Bernoulli likelihood:

N
1
D.w) = Ber [ , £10, K
p(D,w) [H er (y 1+eXwn))]Nu )
Prior Prior
small I medium

Taken from | ]
This is again a nonconjugate model,
which results in an intractable
integral. Could you think of a lower
bound on the computation?

Hint: Use a Gaussian likelihood.
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10 Benetfits of Bayesian Inference

There are multiple benefits:

1) Posterior distribution gives an
estimate of uncertainty.

2) Averaging with respect to it can
reduce overfitting.

3) Posterior distribution enables
data-generation.

4)  Marginal likelihood enables
model-selection.

We give more details about the last
point now.

Occam’s Razor
What is behind the tree?

= TS

From [MaclCay, 2003].

Simpler explanations are better —
in absence of certainty. Bayesian
inference naturally incorporates this
principle.
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Bayesian Razor

A simple model ‘H; can make only
limited range of predictions well,
while a complex models Hy can
cover more range. However, this
means that Ho does not predict the
data set in region C as strongly as
H1. Suppose the two models have
equal prior probabilities, then H;
will be more probable than Hy in
the region Cf.

Evidence

P(DIH))

P(D|H2)

A N ..

D
C1

In a similar fashion, at the param-
eter level the posterior distribution
p(w|D, H,;) incorporates the Occam

factor due to the “spread” around
the MAP value.

'\ P(w|D,H,)

| 1
\
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From | J.
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Bayesian inference performs such se-
lection at both model and parameter

levels:
p(Dlw, H;)p(w|H,;)
WD,%Z — )
PP, ) = Dy
p(D|H:)p(H;)
H;|D) = .
p(Hi|D) (D)
This  beautiful illustration by
[ | demonstrates

this point for a simple model
D = w + noise. Complexity of the
model varies as Hz > Ho > Hi,
but all models have equal prior
probabilities.

N P(D|Hs)

¥7/P(D | H2) - . J
D -/ ------------------------ .?ﬁo.----------------------u'.ogo ----------------
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Demonstration: GP Classification

Marginal likelihood on the training
data (left) reflects the shape of
generalization error evaluated on
test data (right).

In(cf)

In(of)
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Demonstration: Neural Networks

When increasing the model com-
plexity, the neural network easily
overfits on the test data, but the
marginal likelihood on training data
reflects the generalization error.

Test Error

Training Error —

(d)

Model Control Parameters

Log Probability(Training Data | Control Parameters)

Model Control Parameters
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11 Summary

The main computational issue is
that we need to average over all pos-
sible w, which is very difficult to do
exactly.

p(D) = / [Hp(ynlfw(xn))] p(w)dw.

There are at-least three computa-
tional challenges:

1) Too many factors (large N)

2) Too many dimensions (large D)
3) Nonconjugacy (e.g., non Gaussian
likelihood with a Gaussian prior)
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