
Approximate Bayesian
Inference

Mohammad Emtiyaz Khan
AIP (RIKEN), Tokyo

http://emtiyaz.github.io

emtiyaz.khan@riken.jp

June 28-29, 2018

c©Mohammad Emtiyaz Khan 2018

1



Contents

1 Laplace’s Method 2

2 Variational Inference (VI) 4

3 Mean-Field VI 6

4 Gradient-Based VI 15

5 Natural-Gradient VI 19

6 Variational Auto-Encoders 24

7 Further reading 25

List of concepts 28

1



1 Laplace’s Method

A straightforward choice is a Gaus-
sian distribution. The main idea
behind Laplace’s method is to find
a Gaussian approximation of the
unnormalized posterior distribution
p∗(w) := p(D|w)p(w) centered at
a maximum w0.
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The normalizing constant of a Gaus-
sian is available in closed-form, mak-
ing the approximation easier to com-
pute than the posterior distribu-
tion.
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To find the covariance of the approx-
imation, we Taylor- expand:

log p∗(w) = log p∗(w0) +
c

2
(w −w0)>H(w0)(w −w0) + . . . ,

where H(w) is the Hessian. There-
fore, the Hessian can be used as the
covariance:

q∗(w) := N (w|w0,H(w0)−1).

Question: Can you think of one exam-

ple where Laplace’s method is exact, and

one example where Laplace’s method

may not work?

A method called Integrated
Nested Laplace Approximation
is shown to work well for a
class of latent Gaussian mod-
els [Rue et al., 2009]. Laplace’s
method has been applied to neural
networks [Barber and Bishop, 1998,
MacKay, 2003, Ritter et al., 2018].
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2 Variational Inference (VI)

Laplace’s method exploits the local
information at a MAP estimate,
but this might not be accurate.
Methods, such as variational infer-
ence and expectation propagation,
improve accuracy by using a global
average.

To measure the “goodness” of an ap-
proximation q(w) we need to define
distance between distributions.

Kullback-Leibler Divergence

The KL divergence enables us to
measure a distance between two
densities p and q,

DKL[q ‖ p] :=

∫
q(w) log

p(w)

q(w)
.

It is not a “proper” distance measure
because DKL[q ‖ p] 6= DKL[p ‖ q].
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Bayesian Inference as Optimization

We can express Bayesian inference
as an optimization problem:

max
q∈P
LV I(q) :=

Eq(w) [log p(D|w)]− DKL[q(w) ‖ p(w)].

This is equivalent to Bayesian in-
ference when P contains the poste-
rior distribution. We can see this by
rewriting the problem as,

LV I(q) = log p(D)− DKL[q(w) ‖ p(w|D)].

Maximizing LV I is equivalent to
minimizing the second term which
has a minimum value of 0 at
q∗(w) := p(w|D). Since DKL ≥ 0,
log p(D) ≥ LV I (a lower bound).

By relaxing the optimization prob-
lem, we can compute approxima-
tions. This is called variational
inference (VI). The objective LV I
is called the evidence lower bound
(ELBO) or the variational objec-
tive. The approximation q is called
the variational distribution. Several
other names for VI are variational
Bayes, minimum description-length,
and ensemble learning.
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3 Mean-Field VI
One straightforward way is to re-
strict the space of densities P such
that the optimization problem be-
comes easier, e.g., we can use a
mean-field approximation:

p(w|D) ≈ q(w) :=

D∏
i=1

qi(wi),

where wi is the i’th dimension of w
and qi is an arbitrary distribution
over wi. The distribution q is the
mean-field variational distribution.

Question: Consider,

p(w|D) := N
([

w1

w2

] ∣∣∣∣[ 0

0

]
,

[
σ2

1 0

0 σ2
2

])
≈ q(w) := N (w1|0, σ2

q)N (w2|0, σ2
q),

where the variance σ2
q of q1(w1) is same

as that of q2(w1).

What is the value of σ2
q that minimizes

DKL[q(w) ‖ p(w|D)]? What about min-

imizing DKL[p(w|D) ‖ q(w)]?

6



(a) (b)

Figure 33.6 from [MacKay, 2003]

This is due to the zero-avoidance
property of variational inference. In
DKL[q ‖ p] there is a large positive
contribution from regions in which
p is near zero unless q is also close to
zero. On the other hand, DKL[p ‖ q]
is minimized by q that covers the
mass of p.

Minimizing DKL[p(w|D) ‖ q(w)]
leads to a different type of method,
e.g., expectation propagation. The
two methods obtain very different
approximations.

Taken from [Bishop, 2006] Figure 10.3.
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Optimality Condition

The optimal solution for mean-field
VI takes the following form:

log q∗i (wi) =
Eq∗

/i
(w/i)

[log p(D,w)]∫
Eq∗

/i
(w/i)

[log p(D,w)] dwi
,

where q∗/i(w/i) :=
∏

j 6=i q
∗
j (wj). For

a class of conditionally-conjugate
models, this update is easy to per-
form using coordinate descent.

Question: Suppose we want to approxi-

mate

p(w|D) := N

([
w1

w2

] ∣∣∣∣∣
[

0

0

]
,

[
λ1 λ12

λ12 λ2

]−1
)
,

by a factorized q1(w1)q2(w2). What is

the optimal form of q1 and q2?
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Coordinate-Descent
When computing qi(wi) is easy
given q(w/i), we can use a
coordinate-descent algorithm to
optimize ELBO.
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Figure 1: Coordinate descent for mean-field VI in N (D|µ, σ2) with

Gaussian prior on µ and Gamma prior on σ ([Bishop, 2006] Fig. 10.4).
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Question: Derive the update for mean-

field VI in a Bayesian linear-regression

model yn ≈ w1xn1 + w2xn2, i.e.,

p(w1, w2|D) ≈ q1(w1)q2(w2)

This kind of update arises due
to a conjugacy property of pairs
of exponential-family distribution,
which we describe next.
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Conjugate Exponential-Family Models

An exponential-family prior distri-
bution takes the following form:

pη0(w) := h(w) exp
[
φ(w)Tη0 − A(η0)

]
.

The prior and likelihood are con-
jugate distributions when the likeli-
hood/prior can be expressed in the
same form with respect to w:

p(D|w) = exp
[
φ1(D)Tη1(w)− A1(w)

]
,

= exp
[
φ(w)Tη10(D)− f10(D)

]
,

for some functions η10 and f10. The
posterior distribution in this case is
available in closed-form:

p(w|D) ∝ exp
[
φ(w)T {η1(D) + η0}

]
.

Note that a closed-form expression
does not necessarily mean that the
computation is easy.
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Conditionally-Conjugate Models

Using the conjugacy property,
efficient mean-field VI can be per-
formed on conditionally-conjugate
graphical models [Beal, 2003].

Given a Bayesian network over w,
we denote the set of the parents and
children of note wi by pai and chi re-
spectively. We also denote the set of
co-parent of a child wj by cpij. The
optimality condition can be written
as follows:

log q∗i (wi) = Eq∗
/i

(w/i)
[log p(wi|pai)]

+
∑
j∈chi

Eq∗
/i

(w/i)

[
log p(wj|wi, cpij)

]
+ cnst.
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Variational Message Passing

The optimal distribution can be
computed locally by simply adding
messages from neighbors.

Consider the factor y → x:

log p(y|pay) = ηy(pay)
>φy(y) + fy(y) + gy(pay),

log p(x|y, cpy) = ηx(y, cpy)
>φx(x) + fx(x) + gx(y, cpx),

= ηxy(x, cpy)
>φy(y) + fxy(X, cpy).

where the last line follows due to the
conjugacy property which ensures
that log of a factor is a multi-linear
function of the sufficient-statistics of
all of the variables involved in it.

The optimal natural-parameter is
obtained by summing the natural
parameters of its neighbors:

η∗y = Eq∗
/y

(w/y)

ηy(pay) +
∑
x∈chy

ηxy(x, cpy)

 .
This is the variational message-
passing (VMP) algorithm
[Winn and Bishop, 2005].
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Pros and Cons of Mean-Field Methods
Inference could be very fast for
some models. Also, we do not need
to make any approximations for the
form of the variational distribution.

Mean-field underestimates the vari-
ance which could be very inaccurate
in many situations.
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The methods discussed so far only
work for conditionally-conjugate
models (i.e., not for logistic regres-
sion and DNNs).
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4 Gradient-Based VI
An alternative to mean-field is
to choose q to be of a specific
parametric form, and then optimize
the lower bound with respect to the
parameters of q. Given parameters
θ, we denote the distribution as
qθ(w), for example, θ := {µ,Σ}
for a Gaussian approximation with
mean m and covariance Σ.

The lower bound can be written as
a function of θ: LV I(θ) :=

= Eqθ(w) [log p(D|w)]− DKL[qθ(w) ‖ p(w)],

= Eqθ(w) [LMAP (w)− log qθ(w)] .

This is attractive due to its sim-
ilarity to the MAP objective. If
we can compute unbiased stochastic
gradients, we can use a stochastic-
gradient method, e.g., SGD.

θ ← θ + ρ
̂∂LV I(θ)

∂θ
,

where ρ is a learning rate.

How to compute stochastic gradi-
ents?
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Stochastic Gradients I
REINFORCE is an approach to
compute stochastic gradients of
generic functions that can be
written as an expectation of qθ
[Williams, 1992]. It is based on the
log-derivative trick:

∂qθ
∂θ

= qθ
∂log qθ
∂θ

.

The REINFORCE gradient estima-
tor with one sample w∗ ∼ qθ(w)
and a data-minibatch is given by:

∂LV I(θ)

∂θ
≈ ∂log qθ(w)

∂θ

{
L̂MAP (w)− log qθ(w))− 1

}
.

This type of approximation is also
referred to as a doubly stochastic-
gradient method.

REINFORCE is widely applica-
ble, but might suffer from higher
variance. Some variance reduc-
tion methods are discussed in
[Ranganath et al., 2014].
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Stochastic Gradients II
When qθ can be reparameterized
in terms of a simpler parameter-
free distribution, we can use
the reparameterization trick
[Kingma and Welling, 2013], e.g.,
let qθ := N (z|µ, diag(σ2)) with
θ := {µ,σ}, then a sample from qθ
can be written as,

w(θ; ε) = µ+σ◦ε, ε ∼ N (ε|0, I).

Here is a stochastic gradient with
one Monte-Carlo sample w∗:

∂LV I(θ)

∂θ
≈ ∂w∗

∂θ

∂LMAP (w∗)

∂w
− ∂w∗

∂θ

∂log qθ(w
∗)

∂w
− ∂log qθ(w

∗)

∂θ
.

This approximation makes use of the
gradient of the objective and usu-
ally has lower variance than RE-
INFORCE estimator, however it is
only applicable when the distribu-
tion is reparameterizable.
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Application to BNNs

We now discuss recent VI meth-
ods for Bayesian neural networks
(BNNs). The most common ap-
proach is to use a Gaussian prior
p(w) and a Gaussian approximation
qθ(w) with θ := {µ,Σ}. We can
then use a reparameterization trick
to compute the gradients.

An alternative is to use the
Bonnet’s and Price’s theorems
[Opper and Archambeau, 2009,
Rezende et al., 2014] to express the
gradients of the expectation of f (w)
with respect to µ and Σ in terms of
the gradient and Hessian of f (w),

∇µEq [f (w)] = Eq [∇wf (w)] ,

∇ΣEq [f (w)] = 1
2Eq
[
∇2
wwf (w)

]
.

We can also avoid computing Hes-
sian by using a Gauss-Newton ap-
proximation [Graves, 2011]:

∇ΣEq [f (w)] = 1
2Eq
[
∇wf (w)∇wf (w)>

]
.

We can perform VI just by us-
ing backpropagation. An alterna-
tive method is Bayes-by-Backprop
[Blundell et al., 2015].
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5 Natural-Gradient VI
Variational distributions has a Rie-
mannian manifold associated with
them. We can exploit it to improve
convergence and also to obtain sim-
ple updates. Overall, this leads to
methods that unify message-passing
and gradient-based methods.

Exponential-Family Approximations

We will focus on exponential-family
variational distribution,

qλ(w) := h(w) exp
[
λ>φ(w)− A(λ)

]
,

where λ is the natural-parameter.
We also need to define expectation
parameter and Fisher information
matrix (FIM):

µ(λ) := Eqλ[φ(w)],

F(λ) := Eqλ[∇λ log qλ(w)∇λ log qλ(w)>].

We will use the following properties:

µ(λ) := ∇λA(λ), F(λ) := ∇2
λA(λ).

We will assume a minimal represen-
tation which makes sure that map-
ping between µ and λ is one to one.
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Natural Gradients
Given the FIM, natural gradients in
the natural-parameter space are de-
fined as follows:

∇̃λf (λ) := F(λ)−1∇λL(λ).

The FIM specifies a Riemannian ge-
ometry which gives a more natural
way of measuring distances between
distributions than the Euclidean dis-
tance used in SGD.

λt+1 = λt + ρt∇λL(λt),

= arg max
λ

λ>∇λL(λt)−
1

2ρt
‖λ− λt‖2.
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Replacing the Euclidean distance
‖λ− λt‖2 by a Riemannian metric,
(λ−λt)>F(λt)(λ−λt), we get the
natural-gradient descent:

λt+1 = λt + αt∇̃λL(λt).
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Optimality Condition

Natural-gradient is not only useful
to improve convergence, but also
naturally appears in the optimality
condition:

λ∗ = F(λ∗)−1∇λEqλ∗ [LMAP (w)] .

The optimal natural-parameter is
equal to the natural-gradient of ex-
pected MAP objective.

Natural-Gradient Computation

The FIM might be expensive to
compute, but in some cases we can
simplify the computation using the
following relationship:

F(λ)−1∇λf (λ) = ∇µf (λ).

For example, for a Gaussian distri-
bution, ∇µ is much easier to com-
pute than an explicit computation
of the FIM.
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Message-Passing using Natural Gradients

Suppose we want to compute a
Gaussian approximation for the fol-
lowing lower bound with a Gaussian
prior p(w),

N∑
n=1

Eqλ(w) [log p(yn|fw(xn))]− DKL[qλ(w) ‖ p(w)].

The natural-gradient of the second
term is equal to η − λ. Using this
we can obtain a stochastic natural-
gradient descent update:

λt+1 = (1− αt)λt + αt
[
η + N∇µEqλ(w) [log p(yn|fw(xn))]

]
.

In general, the natural-gradient of
terms that are conjugate to qλ is
very simple to compute using an
update similar to conditionally-
conjugate models. This algorithm
is proposed in [Khan and Lin, 2017].

For conditionally-conjugate mod-
els, this approach reduces to
stochastic variational inference
[Hoffman et al., 2013].
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Natural-Gradient VI for BNNs
Natural-gradient VI for BNN is also
simpler than gradient-based VI.

µt+1 = µt − βt
∇̂ log p(yn|fwt(xn)) + λ̃µt

st+1 + λ̃
,

st+1 = (1− βt)st + βt ∇̂2 log p(yn|fw(xn)),

where we have used one data exam-
ple n and one Monte-Carlo (MC)
sample θt ∼ N (θ|µt,σ2

t ) with
σ2
t := 1/[N(st + λ̃)] and λ̃ := λ/N .

If we replace Hessian by a Gauss-
Newton approximation, this is
equivalent to a weight-perturbed
RMSprop optimizer. A version with
the Adam optimizer is derived in
[Khan et al., 2018].

23



6 Variational Auto-Encoders
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7 Further reading
• For Laplace’s method, read Section

4.4 in [Bishop, 2006] and Chapter 27 in
[MacKay, 2003].

• For VI, read Chapter 10 in [Bishop, 2006]
and Chapter 33 in [MacKay, 2003].

• For more details on reformulation of
Bayesian inference as an optimiza-
tion problem, see [Zhu et al., 2014] or
[Williams, 1980].

• See more on minimum
description-length principle in
[Hinton and Van Camp, 1993].

• A good reference for exponential-
family distributions is
[Wainwright and Jordan, 2008], Chapter
3.

• For natural-gradients and information
geometry, [Amari, 2016] is an easy to
read book.
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