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1 Laplace’s Method

A straightforward choice is a Gaus-
sian distribution. The main idea
behind Laplace’s method is to find
a Gaussian approximation of the
unnormalized posterior distribution
p*(w) = p(D|w)p(w) centered at
a maximum wy.
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The normalizing constant of a Gaus-
sian is available in closed-form, mak-
ing the approximation easier to com-
pute than the posterior distribu-
tion.



To find the covariance of the approx-
imation, we Taylor- expand:
* * C
log p*(w) = log p*(wo) + §(W —wy) H(wo)(w —wo) + ...,

where H(w) is the Hessian. There-
fore, the Hessian can be used as the
covariance:

¢ (w) == N(w|wo, H(wg) ™).

Question: Can you think of one exam-
ple where Laplace’s method is exact, and
one example where Laplace’s method

may not work?

A method called Integrated
Nested Laplace Approximation
is shown to work well for a
class of latent Gaussian mod-

els | |. Laplace’s
method has been applied to neural
networks |
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2 Variational Inference (VI)

Laplace’s method exploits the local
information at a MAP estimate,
but this might not be accurate.
Methods, such as variational infer-
ence and expectation propagation,
improve accuracy by using a global
average.

To measure the “goodness” of an ap-
proximation g(w) we need to define
distance between distributions.

Kullback-Leibler Divergence

The KL divergence enables us to
measure a distance between two
densities p and q,

p(w)

q(w)

.

Dyrlqll p] = /q(W) log

[t is not a “proper” distance measure
because Dy |q || p| # Dy lp || gl



Bayesian Inference as Optimization

We can express Bayesian inference
as an optimization problem:

max EV]((]> =

qeP

Eqw) [log p(D|w)] = Dy [g(w) || p(w)].

This is equivalent to Bayesian in-
ference when P contains the poste-
rior distribution. We can see this by
rewriting the problem as,

Lyi(q) =logp(D) — Dgplg(w) || p(w|D)].

Maximizing Ly is equivalent to
minimizing the second term which
has a minimum value of 0 at
¢*(w) := p(w|D). Since Dy > 0,
log p(D) > Ly (a lower bound).

By relaxing the optimization prob-
lem, we can compute approxima-
tions.  This is called variational
inference (VI). The objective Ly
is called the evidence lower bound
(ELBO) or the variational objec-
tive. The approximation ¢ is called
the variational distribution. Several
other names for VI are variational
Bayes, minimum description-length,
and ensemble learning.
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3 Mean-Field VI

One straightforward way is to re-
strict the space of densities P such
that the optimization problem be-
comes easier, e.g., we can use a
mean-field approximation:

<W|D ~ q HQZ wz

where w; 1s the 2’th dimension of w
and ¢; is an arbitrary distribution
over w;. The distribution ¢ is the
mean-field variational distribution.

Question: Consider,

)= ([ [0][ 7 22])
~ q(w) = N(wi0,55)N (w0, 07),

where the variance o7 of gi(w;) is same
as that of go(wy).

What is the value of 03 that minimizes
Dy, lg(w) || p(w|D)]? What about min-
imizing Dy, [p(w|D) || ¢(w)]?




(a) (b)

Figure 33.6 from [Macl{ay, 2003]

This is due to the zero-avoidance
property of variational inference. In
Dy lg || p] there is a large positive
contribution from regions in which
p is near zero unless ¢ is also close to
zero. On the other hand, Dy, [p || ¢
is minimized by ¢ that covers the
mass of p.

Minimizing Dy [p(w|D) || g(w)]
leads to a different type of method,
e.g., expectation propagation. The
two methods obtain very different

approximations.

N

Taken from [Bishop, 2006] Figure 10.3.



Optimality Condition

The optimal solution for mean-field
VI takes the following form:

| *< ) Eq’/kl.(w/i) [lng(D, W)]
A quZ.(w/i) [1ng<D7 W)] dwi’

where ¢j;(w ;) == 1], ¢;(w;). For
a class of conditionally-conjugate
models, this update is easy to per-

form using coordinate descent.

Question: Suppose we want to approxi-
mate

o =([2]|1 L0 2T

by a factorized qi(wy)qa(ws). What is
the optimal form of ¢; and ¢57




Coordinate-Descent
When computing ¢;(w;) is easy
given ¢(wy), we can use a

coordinate-descent  algorithm  to
optimize ELBO.

2 - 2
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Figure 1. Coordinate descent for mean-field VI in N(D|u, 0?) with
Gaussian prior on p and Gamma prior on o ([Bishop, 2000] Fig. 10.4).



Question: Derive the update for mean-
field VI in a Bayesian linear-regression
model vy, ~ w1, + waxye, i,

plwr, w2| D) &~ q1(w1)ga(ws)

This kind of update arises due
to a conjugacy property of pairs
of exponential-family distribution,
which we describe next.
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Conjugate Exponential-Family Models

An exponential-family prior distri-
bution takes the following form:

Pno(W) := h(W) exp [fb(W)Tno — A("?o)] :

The prior and likelihood are con-
jugate distributions when the likeli-
hood /prior can be expressed in the
same form with respect to w:

p(D|w) = exp [¢1(D) my(w) — A(w)],
:exp[ (W )7710( ) — flO(D)]a

for some functions 1,5 and f1p. The
posterior distribution in this case is
available in closed-form:

p(w|D) o exp [p(w)" {n,(D) + ne}] -

Note that a closed-form expression
does not necessarily mean that the
computation 1s easy.

11



Conditionally-Conjugate Models

Using the conjugacy property,
eficient mean-field VI can be per-
formed on conditionally-conjugate
graphical models | J.

Given a Bayesian network over w,
we denote the set of the parents and
children of note w; by pa, and ch; re-
spectively. We also denote the set of
co-parent of a child w; by cp;;. The
optimality condition can be written
as follows:

log q; (w;) = qui('w/i) log p(w;|pay)]

+ Z Eq;(w/i) [logp(wﬂwi, cpz-j)] + cnst.

jJ€Ech;
pay
f\| e o o |/§
N N/
/\k CPy
- /,___A_\
| Y\\ \/ \I 4/\
\h/\ \//' /
/
/’/ ?/‘5(4;
g <
ChY
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Variational Message Passing

The optimal distribution can be
computed locally by simply adding
messages from neighbors.

Consider the factor y — x:

log p(y|pa,) = n,(pa,) &,(y) + f,(y) + g,(pa,),
log p(zly, cp,) = n.(y,cp,) ' @.(x) + fo(x) + g2(y, D),
=0, (2,cp,) D, (y) + foy(X, D).

where the last line follows due to the
conjugacy property which ensures
that log of a factor is a multi-linear
function of the sufficient-statistics of
all of the variables involved in it.

The optimal natural-parameter is
obtained by summing the natural
parameters of its neighbors:

My =By w,) [M,(Pa,) + > ny(x,cp,)

mEchy

This is the variational message-
passing (VMP) algorithm

| J
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Pros and Cons of Mean-Field Methods

Inference could be very fast for
some models. Also, we do not need
to make any approximations for the
form of the variational distribution.

Mean-field underestimates the vari-
ance which could be very inaccurate
In many situations.
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The methods discussed so far only
work for conditionally-conjugate

models (i.e., not for logistic regres-
sion and DNNs).
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4 Gradient-Based VI

An alternative to mean-field is
to choose ¢ to be of a specific
parametric form, and then optimize
the lower bound with respect to the
parameters of ¢g. Given parameters
0, we denote the distribution as
qo(w), for example, 8 = {u, X}
for a Gaussian approximation with
mean m and covariance J.

The lower bound can be written as
a function of 8: Ly (0) :=

= Egyw) log p(D|W)] — D p|ga(w) || p(w)],
= Eyyw) [Larap(w) — log go(w)] .

This is attractive due to its sim-
ilarity to the MAP objective. It
we can compute unbiased stochastic
oradients, we can use a stochastic-
oradient method, e.g., SGD.

A

OLy ()
90

where p is a learning rate.

0—0+p

How to compute stochastic gradi-
ents?

15



Stochastic Gradients 1

REINFORCE is an approach to
compute stochastic gradients of
generic functions that can be
written as an expectation of qg
[ |. It is based on the
log-derivative trick:

dgg  Olog gy
06— o8

The REINFORCE gradient estima-
tor with one sample w, ~ @gy(w)
and a data-minibatch is given by:

OLy1(0) _ 0Ologgqy(w) {A
00 00
This type of approximation is also

referred to as a doubly stochastic-
oradient method.

REINFORCE is widely applica-
ble, but might suffer from higher
variance.  Some variance reduc-
tion methods are discussed in

| J
16

Lyap(w) — logge(w)) — 1
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Stochastic Gradients 11

When ¢y can be reparameterized
in terms of a simpler parameter-
free distribution, we can use
the  reparameterization  trick
| |, eg,
let g9 = N(z|p,diag(c?)) with
0 = {p, o}, then a sample from gy
can be written as,

w(0;€) = ptooe, €~ N(el0,I).

Here is a stochastic gradient with
one Monte-Carlo sample w*:

OLyi(0)  OwW"ILyap(W*)  Ow”Ologgo(w*)  Ologgy(w™)

00 00 ow 00 ow 00

This approximation makes use of the
gradient of the objective and usu-
ally has lower variance than RE-
INFORCE estimator, however it is
only applicable when the distribu-
tion is reparameterizable.

17



Application to BNNs

We now discuss recent VI meth-
ods for Bayesian neural networks
(BNNs).  The most common ap-
proach is to use a Gaussian prior
p(w) and a Gaussian approximation
qo(w) with @ = {u,3}. We can
then use a reparameterization trick
to compute the gradients.

An alternative is to wuse the
Bonnet’s and Price’s theorems
| ,

| to express the
gradients of the expectation of f(w)
with respect to p and X in terms of
the gradient and Hessian of f(w),

V,.E,[f(W)] = E,[Vuf(w)],
Vs, [f(w)] = 3E, [V, f(w)] .

We can also avoid computing Hes-
sian by using a Gauss-Newton ap-
proximation | |:

Vsl f(w)] = %Eq [wa(W)wa(W)T} :

We can perform VI just by us-
ing backpropagation. An alterna-
tive method is Bayes-by-Backprop
| ]

18



5 Natural-Gradient VI

Variational distributions has a Rie-
mannian manifold associated with
them. We can exploit it to improve
convergence and also to obtain sim-
ple updates. Overall, this leads to
methods that unify message-passing
and gradient-based methods.

Exponential-Family Approximations

We will focus on exponential-family
variational distribution,

gr\(W) := h(W) exp [)\Tqﬁ(w) — A()\)] ,

where A is the natural-parameter.
We also need to define expectation

parameter and Fisher information
matrix (FIM):

p(A) = EqA[(b(W)]:
F(A) :=E,[Valogg(w)Vyloggn(w)'].

We will use the following properties:
(A = Vy3AN),  FA) = ViAN).

We will assume a minimal represen-
tation which makes sure that map-
ping between g and A is one to one.

19



Natural Gradients

Given the FIM, natural gradients in
the natural-parameter space are de-
fined as follows:

Vaf(A) = FA) 'L LA).

The FIM specifies a Riemannian ge-
ometry which gives a more natural
way of measuring distances between
distributions than the Euclidean dis-
tance used in SGD.

Air1 = A+ o VAL(y),
1
= arg max A'VAL(A) — 2—MH>\ — X

Two Gaussians with mean 1 and 10 respectively
and variances equal to g; have Euclidean distance = 10

L

l\\
Iy
Iy
Iy
,' \
01 ’O'-l“
1
4 ‘\-

0 10
Same as the top row but with the variance o, > 0y
but still Euclidean distance = 10

Replacing the Euclidean distance
|A — A¢|]? by a Riemannian metric,
<A — At>TF<)\t><>\ — At>7 we get the

natural-gradient descent:

>\t+1 = )\t + Oét%/\ﬁ‘,()\t).
20



Optimality Condition

Natural-gradient is not only useful
to improve convergence, but also
naturally appears in the optimality
condition:

N =F(X)'V,\E,. [Lrrap(w)].

The optimal natural-parameter is
equal to the natural-gradient of ex-
pected MAP objective.

Natural-Gradient Computation

The FIM might be expensive to
compute, but in some cases we can
simplify the computation using the
following relationship:

F(A)'Vaf(A) = Vuf(N).

For example, for a Gaussian distri-
bution, V,, is much easier to com-
pute than an explicit computation

of the FIM.
21



Message-Passing using Natural GGradients

Suppose we want to compute a
Gaussian approximation for the fol-
lowing lower bound with a Gaussian

prior p(w),

Z o, w) 108 p(yn| fu(xn))] = Dgcplar(w) [ p(w)].

The natural-gradient of the second
term is equal to m — A. Using this
we can obtain a stochastic natural-
gradient descent update:

Air1 = (1 — )N + oy [77 + NVquA(w) [logp<yn‘fw<xn)>]] -

In general, the natural-gradient of
terms that are conjugate to gy is
very simple to compute using an
update similar to conditionally-
conjugate models. This algorithm
is proposed in | J.

For conditionally-conjugate mod-
els, this approach reduces to
stochastic  variational inference

| J
22



Natural-Gradient VI for BNNs

Natural-gradient VI for BNN is also
simpler than gradient-based VI.

% logp<yn‘fwt(xn>) + 5‘/JJt
Si+1 1+ A

St+1 — (1 - @t)st + By 62 1ng<yn|fw<xn>>a

where we have used one data exam-
ple n and one Monte-Carlo (MC)
sample 8; ~ N(0|u;,07) with
o?:=1/[N(s;+ \)] and X :== \/N.

)

i1 = My — By

If we replace Hessian by a Gauss-
Newton approximation, this is
equivalent to a weight-perturbed
RMSprop optimizer. A version with
the Adam optimizer is derived in

| J
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6 Variational Auto-Encoders

24



7

Further reading

For Laplace’s method, read Section
4.4 in | ] and Chapter 27 in

[ J

For VI, read Chapter 10 in | ]
and Chapter 33 in | ].

For more details on reformulation of
Bayesian inference as an optimiza-

tion problem, see | ] or
[ J.

See more on minimum
description-length principle in

[ J

A good reference for exponential-

family distributions is
[ ], Chapter
3.

For natural-gradients and information
geometry, | ] is an easy to
read book.
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