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Unsupervised learning

How can systems learn to represent
particular input patterns in a way
that reflects the statistical structure
of the overall collections of input
patterns? This question is the cen-
tral focus of unsupervised learning.

In unsupervised learning, our data
consists only of features (or inputs)
x1,x2, . . . ,xN , vectors in RD, and
there are no outputs yn available.

Unsupervised learning seems to
play an important role in how living
beings learn. It appears to be much
more common in the brain that
supervised learning.

The two most common types of
unsupervised learning are density
estimation and feature extractions.
In this course, we will focus on
density estimation.

Read Peter Dayan’s note on unsupervised

learning for more details.
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Examples

Given data about various cars, we use matrix factorization
to extract useful features (Khan, 2012).
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Introduction
Motivation: Gaussian latent factor models, such as factor analysis (FA) and
probabilistic principal components analysis (PPCA), are very commonly used
density models for continuous-valued data. They have many applications includ-
ing latent factor discovery, dimensionality reduction, and missing data imputation.
In this work, we consider generalized FA models for mixed continuous and dis-
crete data. These models are extremely useful since they allow for non-trivial
dependencies between data variables with mixed types.

Problem: Unlike standard FA and PPCA, Gaussian latent factor models for dis-
crete data have an intractable integral in the marginal likelihood that makes learn-
ing difficult.

Solution: We propose to solve the intractable integral through the application
of a simple variational quadratic bound to the log-sum-exp function. The bound
applies to both categorical and binary data. The resulting learning algorithm has
advantages over other approaches to learning such models.

Factor Analysis Models
Gaussian Likelihood: Standard factor analysis models assume a Gaussian
prior on the latent factor vector and a Gaussian likelihood on the observed data.
The mean of the Gaussian on the observed data is modeled as a linear projection
of the continuous latent factor.
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Such models are easy to fit since marginal likelihood is available in closed form,

p(yn|θ) =
∫

zn

N (yn|Wzn,Σ)N (zn|0, I) = N (yn|WWT +Σ)

Discrete Likelihood: Standard factor analysis can be generalized to any expo-
nential family likelihood by modeling the natural parameters as a linear projection
of a Gaussian-distributed continuous latent factor vector. In the case of discrete
data, the mean parameters of the multinomial (Bernoulli) distribution are obtained
through a softmax (logistic) transformation applied to the linear projection of the
latent factor vector.

p(zn|θ) = N (zn|0, IL)
ηn = Wzn + µ

p(yD
n |zn,θ) =M(yD

n |S(ηn))

Sm(η) = exp[ηm − lse(η)]

lse(η) = log[
M+1∑

m=1

exp(ηm)]
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Variational Bounds
Tractable Lower bound to the Marginal Likelihood: Computation of the
marginal likelihood is intractable as the multinomial likelihood is not conjugate
to the Gaussian prior. We use variational bounds to compute a tractable lower
bound.

p(yD
n |θ) =

∫

zn

p(yD
n |ηn)p(zn)dzn

=

∫

zn

exp
[
ηT

n yD
n−lse(ηn)︸ ︷︷ ︸

]
N (zn|0, I)dzn

≥ max
ψ

∫

zn

exp
[
ηT

n yD
n−1

2η
T
n Aψηn + bT

ψηn − cψ︸ ︷︷ ︸
]
N (zn|0, I)dzn

for all ψ ∈ RM.

The Bohning Bound: We use a quadratic bound due to Bohning. This bound
can be derived using a Taylor series expansion around ψ ∈ RM,

lse(η) = lse(ψ) + (η −ψ)Tg(ψ) + 1
2(η −ψ)TH(χ)(η −ψ)

where g(·) and H(·) are the gradient and Hessian of lse(·), and χ ∈ RM is
chosen such that the equality holds. An upper bound to lse(η) is found by
replacing the Hessian matrix H(χ) with a fixed matrix A such that A − H(χ) is
positive definite for all χ. Bohning gives one such matrix A, which we define
below:.

lse(η) ≤ 1
2η

TAη − bT
ψη + cψ

A = 1
2[IM − 1M1T

M/(M + 1)]
bψ = Aψ − S(ψ)
cψ = 1

2ψ
TAψ − S(ψ)Tψ + lse(ψ)

where ψ ∈ RM is the variational parameter vector, IM is the identity matrix of
size M ×M and 1M is a vector of ones of length M.

Bohning Bound:
I Less accurate.
I Faster.
I Fixed curvature.

Jaakkola Bound:
I More accurate.
I Slower.
I Variable curvature.

Aψ = 1/4
bψ = Aψ − (1 + e−ψ)−1

cψ = 1
2Aψ2 − (1 + e−ψ)−1ψ

+ log(1 + eψ)

Aψ = 2λψ
bψ = −1

2
cψ = −λψψ2 − 1

2ψ + log(1 + eψ)
λψ = [(1 + e−ψ)−1 − 1

2]/(2ψ)

Illustration of bounds: Variational bounds to log(1+eη). The Bohning bound
has a fixed curvature and is tight at one point, while the Jaakkola bound has a
variable curvature and is tight at two points.
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Posterior Inference and Parameter Estimation
Posterior Inference and Lower Bound to the Marginal Likelihood:

p(yD
n |θ) ≥ max

ψ
|Vn|

1
2 exp

[
1
2mT

n V−1
n mn − cψ + µTAψµ + bT

ψµ + µTyD
n

]

Vn =
(

WTAψW + IL
)−1

mn = VnWT (yD
n + bψ − Aµ)

where q(z) = N (mn,Vn) is the approximate posterior distribution. The maxi-
mum with respect to ψ satisfies the following equation: ψ = Wmn + µ.

Parameter Estimation with EM algorithm: To get closed-form updates in the
M step, we further lower bound the marginal likelihood using Jensen’s inequal-
ity with the Gaussian variational posterior q(zn)

p(yD
n |θ) ≥ max

ψ
Eq

[
ηT

n yD
n − 1

2η
T
n Aψηn + bT

ψηn − cψ
]
+ EqN (zn|0, I) +H(q)

Fixed Curvature Variable Curvature

Complexity: O(L2DNI) per iteration Complexity: O(L3DNI) per iteration

Initialize W and µ.
repeat

V =
(

WTAW + IL
)−1

for n = 1, . . . ,N do
Initialize ψ.
for i = 1, . . . , I do
mn = VWT (yD

n + bψ − Aµ)
Update ψ,bψ and cψ.

end for
ỹn = A−1(yD

n + bψ)− µ
end for
µ =

∑
ỹn/N.

W =
(∑

ỹnmT
n
) [∑

V + mnmT
n
]−1

until convergence

Initialize W and µ.
repeat
for n = 1, . . . ,N do
Initialize ψ.
for i = 1, . . . , I do

Vn =
(

WTAψW + IL
)−1

mn = VnWT (yD
n + bψ − Aψµ)

Update ψ,Aψ,bψ and cψ.
end for
ỹn = A−1

ψ (yD
n + bψ)− µ

end for
µ =

∑
ỹn/N.

W =
(∑

ỹnmT
n
) [∑

Vn + mnmT
n
]−1

until convergence

Inference Example: Top row shows the likelihood for a binary observation
y = 1 along with lower bounds and the prior distribution. Bottom row show the
true and approximate posterior distributions.
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Error in Estimating the Marginal Likelihood: The Bohning bound (blue) and
the Jaakkola bound (red).

Results
Models and Methods:
FA-VM FA model with the Bohning bound.
FA-VJM FA model with the Jaakkola bound for binary data.
Mix-FA Mixture of FA model with the Bohning bound.
FA-MM FA model with the Maximize-maximize approach (Collins et. al. 2002).
FA-SS FA model with the Sample-sample approach (Mohamed et. al. 2008).
Mix-Full/Diag Mixture model with a full or diagonal covariance matrix.

Synthetic Data Experiment: MSE vs time on synthetic Binary data with N =
600,D = 16,L = 10 and 10% missing data.
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Real Data Experiment: We compute imputation MSE and entropy on three
datasets. We choose number of latent factors and number of mixture compo-
nents using cross-validation.
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Auto dataset has 392 observations of 3 continuous and 5 discrete variables with
total of 21 categories. Adult dataset has 45,222 observations of 4 continuous
and 5 discrete variables with total of 27 categories. ASES dataset has 16,815
observations of 42 discrete variables with total of 156 categories.

Continuous FA vs Mixed-Data FA: Latent factors for Auto data. Top row shows
factors using only continuous variables. Bottom row shows factors obtained by
including discrete variables.
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Given ratings of movies and viewers, we use matrix factor-
ization to extract useful features (Khan et al. 2014).
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Given voting patterns of regions across Switzerland, we use
PCA to extract useful features (Etter et al. 2014).

Figure 8: Projection of the vote results in each municipality onto the first two singular vectors of the
municipality votes matrix M. The shape of each point indicates the language spoken by the majority in the
municipality. A clear separation is visible between the French-speaking municipalities and the remaining
municipalities.

Figure 9: Voting patterns of Swiss municipalities. The color of a municipality is assigned using its location in
Figure 8 and the color gradient shown in the upper right corner. Two municipalities with similar colors have
similar voting patterns. The Röstigraben, corresponding to the cultural difference between French-speaking
municipalities and German-speaking ones, is clearly visible from the difference in voting patterns. Regions
shown in white are lakes or municipalities for which some vote results are missing (due to a merging of
municipalities, for example). A more detailed map can be found online [2].
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FIGURE 14.12. Dendrogram from agglomerative hi-
erarchical clustering with average linkage to the human
tumor microarray data.
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Clustering more than two million biomedical publications
(Kevin Boyack et.al. 2011)

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 14

FIGURE 14.14. DNA microarray data: average link-
age hierarchical clustering has been applied indepen-
dently to the rows (genes) and columns (samples), de-
termining the ordering of the rows and columns (see
text). The colors range from bright green (negative, un-
der-expressed) to bright red (positive, over-expressed).
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Clustering articles published in Science (Blei & Lafferty 2007)
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FIG. 2. A portion of the topic graph learned from 16,351 OCR articles from Science (1990–1999). Each topic node is labeled with its five most
probable phrases and has font proportional to its popularity in the corpus. (Phrases are found by permutation test.) The full model can be found in
http://www.cs.cmu.edu/~lemur/science/ and on STATLIB.
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