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Motivation
By changing the cost function from
Logistic to Hinge, we obtain SVMs.
However, the resulting cost is diffi-
cult to optimize. We will use du-
ality (similar to kernelized ridge) to
show a surprising result: the solu-
tion to the dual problem is sparse.
The non-zero entries will be our sup-
port vectors.

Support vector machine

Throughout, we will work with a
classification problem and assume
that yn ∈ {−1,+1} (instead of
∈ {0, 1}). Also, we will work with

φ̃(x) instead of x̃ (bias included).

SVM optimizes the following cost:

min
β

N∑
n=1

[1− ynφ̃
T

nβ]+ +
λ

2

M∑
j=1

β2
j

where the first term is the Hinge loss
defined as [t]+ = max(0, t). A “con-
ventional” definition is shown below:

min
β

N∑
n=1

C[1− ynφ̃
T

nβ]+ +
1

2

M∑
j=1

β2
j .
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Hinge vs MSE and logistic

Consider y ∈ {−1,+1} with pre-
diction f ∈ R, then the three cost
functions can be written as follows:

Hinge(f ) = [1− yf ]+

MSE(f ) = (1− yf )2

logisticLoss(f ) = log
(
1 + e−yf

)
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Support Vectors

There is a property we have not yet used, which links primal and dual variables
at the saddlepoint. By working it out, we will complete our derivation of the
soft margin SVM dual problem. First, we will find how to solve for b∗. Second,
we will obtain an important classification of patterns (xi, ti) in terms of values
of αi, which will finally clarify the catchy name “support vectors”. To gain some
intuition, consider the soft margin SVM solution in Figure 9.7. Three different
things can happen for a pattern (xi, ti). First, it may be classified correctly
with at least the margin, in that tiyi ≥ 1. In this case, the optimal solution does
not really depend on it. We could remove the pattern from D and still get the
same solution. The solution is not supported by these vectors. Second, it may
lie precisely on the margin, tiyi = 1. These ones are important, they provide
the essential support. Finally, for the soft margin SVM, there may be patterns
in the margin area or even misclassified, tiyi < 1. They support the solution as
well, because we pay for them, and removing them may allow us to increase the
soft margin.

Figure 9.7: Different types of patterns for soft margin SVM solution. (x1, t1)
is classified correctly with margin, t1y1 ≥ 1. The SV solution does not depend
on it. (x2, t2) is an essential support vector and lies directly on the margin,
t2y2 = 1. Both (x3, t3) and (x4, t4) are bound support vectors, α3 = α4 = C.
(x3, t3) lies in the margin area, while (x4, t4) is misclassified (t4y4 < 0).

Suppose now that we are at a saddlepoint of the dual problem, dropping the
“*” subscript for easier notation. Recall how we got the αi into the game above:

C[1− tiyi]+ = max
αi∈[0,C]

αi(1− tiyi).

A glance at Figure 9.6 reveals that αi is linked with yi (and therefore with w, b)

Notice the margin in the Hinge loss.
SVM is a maximum margin method.

500 Chapter 14. Kernels

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.
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Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0, otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0.
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).

See section 14.5.2.2 of KPM book.
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Issues with optimization

Is this function convex? Is it differ-
entiable?

min
β

N∑
n=1

C[1− ynφ̃
T

nβ]+ +
1

2

M∑
j=1

β2
j .

Duality: the big picture

Let us say that we are interested in
optimizing a function g(β) and it is
a difficult problem. Define an auxil-
iary function G(β,α) as follows:

g(β) = max
α
G(β,α).

Three questions.

1. How do you set G(α,β)?

2. When is it OK to switch max
and min?

3. When is the dual better than
the primal, and why?

Q1: How do you set G(α,β)?

C[vn]+ = max(0, Cvn) = max
αn

αnvn where αn ∈ [0, C]

C[1− ynφ̃
T

nβ]+ = max
αn∈[0,C]

αn(1− ynφ̃
T

nβ)
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We can rewrite the problem as:

min
β

max
α∈[0,C]N

N∑
n=1

αn(1− ynφ̃
T

nβ) +
1

2

M∑
j=1

β2
j

This is differentiable, convex in β
and concave in α.

Q2: When is it OK to switch max
and min? Using a minimax theorem,
it is OK to do so when G(α,β) is
convex in β and concave in α, and
the sets over which α and β are op-
timized are convex. In this case, we
have:

min
β

max
α
G(β,α) = max

α
min
β
G(β,α)

See Bertsekas’ “Nonlinear Program-
ming” for many more variants of
this type of duality.
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Switch the min and max and opti-
mize w.r.t. β to get the dual.

max
α∈[0,C]N

min
β

N∑
n=1

αn(1− ynφ̃
T

nβ) +
1

2

M∑
j=1

β2
j

Take derivative w.r.t. β:

∂G

∂β
= −

[
N∑
n=1

αnynφ̃n

]
+

[
0

β1:M

]
where β1:M is a vector of all βj
except β0.

Equating this to 0, we get:

β∗1:M =

N∑
n=1

αnynφn = ΦTdiag(y)α = ΦTYα

αTy = 0

where Y := diag(y).

Plugging β∗ back in, we get the dual
problem:

max
α∈[0,C]N

αT1− 1
2α

TYΦΦTYα

subject to αTy = 0
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Q3: When is the dual better than
the primal and why?

(1) The dual is a differentiable (but
constrained) least-squares problem.

max
α∈[0,C]N

αT1− 1
2α

TQα,

where Q := diag(y)ΦΦTdiag(y).
Optimization is super easy using
Sequential Minimal Optimization
(SMO). See Wikipedia for details.

Summary: Take two variables
α1 and α2 and fix others. This
gives rise to a 1-D quadratic
problem. Minimize and repeat by
choosing two different elements of α.

(2) The dual is naturally kernelized
(just like the kernelized ridge) with
K := ΦΦT .

(3) The solution α is sparse, and
is non-zero only for the training
examples that are instrumental in
determining the decision boundary.
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Recall that αn is the slope of lines
that are lower bounds to the Hinge
loss.

C[1− ynfn]+ = max
αn∈[0,C]

αn(1− ynfn)

There are 3 kinds of data vectors φ̃n.

1. Not support vectors. Exam-
ples that lie outside the mar-
gin, therefore αn = 0.

2. Essential support vectors. Ex-
amples that lie right on the
margin, therefore αn ∈ (0, C).

3. Bound support vectors. Ex-
amples that lie inside the mar-
gin, therefore αn = C.

168 9 Support Vector Machines

Support Vectors
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well, because we pay for them, and removing them may allow us to increase the
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t2y2 = 1. Both (x3, t3) and (x4, t4) are bound support vectors, α3 = α4 = C.
(x3, t3) lies in the margin area, while (x4, t4) is misclassified (t4y4 < 0).

Suppose now that we are at a saddlepoint of the dual problem, dropping the
“*” subscript for easier notation. Recall how we got the αi into the game above:

C[1− tiyi]+ = max
αi∈[0,C]

αi(1− tiyi).

A glance at Figure 9.6 reveals that αi is linked with yi (and therefore with w, b)
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Issues with SVM
• There are no obvious proba-

bilistic interpretation of SVM.

• Extension to multiclass is dif-
ficult (see Section 14.5.2.4 of
KPM book).

• Choosing C is difficult in the
presence of Kernels.

• The method does not work for
positive semidefinite Kernels.

To do

1. Understand and visualize hinge loss and the margin.

2. Get comfortable with duality. Work out the derivation for SVM.

3. Clearly understand the reasons why dual is better than the primal.

4. What does “support vector” mean? Why do they arise? Where

do they lie in the data space?

5. Read about SMO algorithm from Wikipedia and implement it.

6. Read about SVM for regression (section 14.5.1 of KPM).

7. Read Section 14.5.2.4 of KPM book and understand why exten-

sion of SVM to multiclass is difficult.

8. Read about maximum-margin methods in section 14.5.2.2 of KPM

book.

9. Resource: SVM tutorial by Christopher J.C. Burges at http://

research.microsoft.com/pubs/67119/svmtutorial.pdf
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