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Motivation | Lgishe ileLod (m;,)

By changing the cost function from

Logistic to Hinge, we obtain SVMs.

However, the resulting cost is diffi- ’Zl “leg {’( / ) 1% ﬁ

cult to optimize. We will use du- ( V\’\'/ q:,:';, v";

ality (similar to kernelized ridge) to ?"F *lg(lr e ~ )

show a surprising result: the solu- log (Ve )

tion to the dual problem is sparse. T Hivee loss °

The non-zero entries will be our sup- i

port vectors. l:-é']+ = max (o, %)

Support vector machine \ C-fS,

Throughout 1l work with 6-o-o ot A—H—
roughout, we will work with a .

classiﬁcation problem and assume k—os t= PP,

that y, € {—1,+1} (instead of O clags - % clss 41

e {0,1}). Also, we will work with .
q5( ) instead of X (bias included). A”ow(hﬁ an eré’mU Margm )
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SVM optimizes the following cost:

where the first term is the Hinge loss g £ A 5 N
defined as [t], = max(0,t). A “con- e (5
ventional” definition is shown below: A\ f/gJ.
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Hinge vs MSE and logistic rru
Logistico .
Consider y € {—1,+1} with pre- ;_H ._}}T(b t, (Hef’n(z)
diction f € R, then the three cost ™ ) ™ o0 AR
functions can be written as follows: = log e +lo3L )

Hinge(f) =1 —yfl+
MSE(f)=(1—yff? %, l(iee
logisticLoss(f) = log (1 4+ e—yf)

Comparison of loss functions fqf y=1
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Notice the margin in the Hinge loss.
SVM is a maximum margin method.

See section 14.5.2.2 of KPM book.



Issues with optimization

Is this function convex? Is it differ-
entiable?
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Duality: the big picture @

Let us say that we are interested in mi 9((’-’) "\{
optimizing a function ¢g(3) and it is

a difficult problem. Define an auxil- wr max 6 (e )
iary function G(83, ) as follows: r@ . >
MmaX %k )
9(8) = maxG(B,a).  « 8" | ®
Three questions. \ n;x . G((""Jé)
=L
1. How do you set G(a, 3)? 9(=)

2. When is it OK to switch max
and min?

3. When is the dual better than .
the primal, and why? !

Q1: How do you set G(a, B3)7

Clv,)+ = max(0, Cv,) = max a,v, where oy, € [0, C]
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We can rewrite the problem as:
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This is differentiable, convex in 3
and concave in a.

Q2: When is it OK to switch max
and min? Using a minimax theorem,
it is OK to do so when G(a, B) is
convex in B3 and concave in o, and
the sets over which av and 3 are op-

timized are convex. In this case, we
_ Hat
have:

min max G(3, &) = maxmin G(3, &)

g a s

See Bertsekas” “Nonlinear Program-
ming” for many more variants of
this type of duality:.




Switch the min and max and opti-
mize w.r.t. 3 to get the dual.

M
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Take derivative w.r.t. 3: Derive this ab home |
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where B;.,; is a vector of all ;
except (.

Equating this to 0, we get:

N
IBT:M — Z U Yn Py, = @leag(y)a =d'Ya
oy =0
where Y := diag(y).

Plugging 3* back in, we get the dual
problem: -~ gua

max o'l — %aTIYCIKIJT ﬂaj Ve
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subject to aly = 0
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Q3: When is the dual better than
the primal and why?

(1) The dual is a differentiable (but
constrained) least-squares problem.

max a’l— %aTQa,
a€l0,C1N

4
where Q = diag(y)®®’ diag(y).
Optimization is super easy using
Sequential Minimal Optimization

(SMO). See Wikipedia for details.
Read the details on Jour owns
Summary:  Take two variables
a1 and as and fix others. This
gives 1ise to a 1-D quadratic
problem. Minimize and repeat by
choosing two different elements of a.

(2) The dual is naturally kernelized
(just like the kernelized ridge) with
K:=%3"

R

(3) The solution a is sparse, and
is non-zero only for the training
examples that are instrumental in
determining the decision boundary:.



https://en.wikipedia.org/wiki/Sequential_minimal_optimization
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Recall that «,, is the slope of lines

— J 2D
that are lower bounds to the Hinge <
loss.
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an€[0,C]
There are 3 kinds of data vectors ;Bn

1. Not support vectors. Exam-
ples that lie outside the mar-
gin, therefore o, = 0.

2. Essential support vectors. Ex-
amples that lie right on the »
margin, therefore oy, € (0, C).

3. Bound support vectors. e
amples that lie ingl?ég the mar-

gin, therefore a,, = C'.
Gon the other side
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Issues with SVM

e There are no obvious proba-
bilistic interpretation of SVM.

e [xtension to multiclass is dif-
ficult (see Section 14.5.2.4 of
KPM book).

e Choosing C' is difficult in the
presence of Kernels.

e The method does not work for
positive semidefinite Kernels.

To do

1. Understand and visualize hinge loss and the margin.
Get comfortable with duality. Work out the derivation for SVM.

Clearly understand the reasons why dual is better than the primal.

= W

What does “support vector” mean? Why do they arise?” Where
do they lie in the data space?

ot

Read about SMO algorithm from Wikipedia and implement it.
6. Read about SVM for regression (section 14.5.1 of KPM).

7. Read Section 14.5.2.4 of KPM book and understand why exten-
sion of SVM to multiclass is difficult.

8. Read about maximum-margin methods in section 14.5.2.2 of KPM
book.

[9. Resource: SVM tutorial by Christopher J.C. Burges at http://
research.microsoft.com/pubs/67119/svmtutorial . pdf

[0 Read SVM %me HTI’;


http://research.microsoft.com/pubs/67119/svmtutorial.pdf
http://research.microsoft.com/pubs/67119/svmtutorial.pdf
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Tl,qs FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
mazimal margin of widlh\: B|[.) The right panel shows the nonseparable

‘M\D Toveylap) case. The poiﬁts labeled & are on the wrong side of their margin by
cm amount §§ = M&;; points on the correct side have & = 0. The margin is
mazimized subject to a total budget ) & < constant. Hence ) & is the total
distance of points on the wrong side of their margin.
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