
9.2 Support Vector Machines 159

9.2.3 Kernel Methods

We have all the tools together now to make an exciting step. Let us summarize
our findings. We are interested in regularized estimation problems of the form
(9.5), where y(x) = wTφ(x) + b is linear, examples include the soft margin
SVM and MAP for logistic regression. Here is a mad idea. Suppose we use a
huge number of features p, maybe even infinitely many. Before figuring out how
this could be done, let us first see whether this makes any sense in principle.
After all, we have to store w ∈ Rp and evaluate φ(x) ∈ Rp. Do we? In the
previous section, we learned that we can always represent w = ΦTα, where
α ∈ Rn, and our dataset is finite. Moreover, the error function in (9.5) depends
on

y = Φw + b = ΦΦTα + b

only, and ΦΦT is just an Rn×n matrix. Finally, the Tikhonov regularizer is
given by

ν

2
‖w‖2 =

ν

2

∥∥∥ΦTα
∥∥∥2

=
ν

2
αTΦΦTα,

it also only depends on ΦΦT . Finally, once we are done and found (α∗, b∗),
where w∗ = ΦTα∗, we can predict on new inputs x with

y∗(x) = wT
∗ φ(x) + b∗ = αT∗Φφ(x) + b∗.

We need finite quantities only in order to make our idea work, namely the
matrix ΦΦT during training, and the mapping Φφ(x) for predictions later on,
to be evaluated at finitely many x. This is the basic observation which makes
kernelization work.

The entries of ΦΦT are φ(xi)
Tφ(xj), while [Φφ(x)] = [φ(xi)

Tφ(x)]. We can
write

K(x,x′) = φ(x)Tφ(x′),

a kernel function. It is now clear that given the kernel function K(x,x′), we
never need to access the underlying φ(x). In fact, we can forget about the
dimensionality p and vectors of this size altogether. What makes K(x,x′) a
kernel function? It must be the inner product in some feature space, but what
does that imply? Let us work out some properties. First, a kernel function is
obviously symmetric: K(x′,x) = K(x,x′). Second, consider some arbitrary set
{xi} of n input points and construct the kernel matrixK = [K(xi,xj)] ∈ Rn×n.
Also, denote Φ = [φ(x1), . . . ,φ(xn)]T ∈ Rn×p. Then,

αTKα = αTΦΦTα =
∥∥∥ΦTα

∥∥∥2

≥ 0.

In other words, the kernel matrix K is positive semidefinite (see Section 6.3).
This property defines kernel functions. K(x,x′) is a kernel function if the kernel
matrix K = [K(xi,xj)] for any finite set of points {xi} is symmetric positive
semidefinite. An important subfamily are the infinite-dimensional or positive
definite kernel functions. A member K(x,x′) of this subfamily is defined by all
its kernel matrices K = [K(xi,xj)] being positive definite for any set {xi} of
any size. In particular, all kernel matrices are invertible. As we will see shortly,
it is positive definite kernel functions which give rise to infinite-dimensional
feature spaces, therefore to nonlinear kernel methods.

160 9 Support Vector Machines

Problem: Can I use astronomically many features p? How about p =∞?
Approach: No problem! As long as you can efficiently compute the kernel

function K(x,x′) = φ(x)Tφ(x′), the representer theorem
saves the day.

Hilbert Spaces and All That (*)

Before we give examples of kernel functions, a comment for meticulous read-
ers (all others can safely skip this paragraph and move to the examples). How
can we even talk about φ(x)Tφ(x) if p = ∞? Even worse, what is Φ ∈ Rn×p
in this case? In the best case, all this involves infinite sums, which may not
converge. Rest assured that all this can be made rigorous within the frame-
work of Hilbert function and functional spaces. In short, infinite dimensional
vectors become functions, their transposes become functionals, and matrices
become linear operators. A key result is Mercer’s theorem for positive semidefi-
nite kernel functions, which provides a construction for a feature map. However,
with the exception of certain learning-theoretical questions, the importance of
all this function space mathematics for down-to-earth machine learning is very
limited. Historically, the point about the efforts of mathematicians like Hilbert,
Schmidt and Riesz was to find conditions under which function spaces could
be treated in the same simple way as finite-dimensional vector spaces, working
out analogies for positive definite matrices, quadratic functions, eigendecom-
position, and so on. Moreover, function spaces governing kernel methods are of
the particularly simple reproducing kernel Hilbert type, where common patholo-
gies like “delta functions” do not even arise. You may read about all that in
[39] or other kernel literature, it will not play a role in this course. Just one
warning which you will not find spelled out much in the SVM literature. The
“geometry” in huge or infinite-dimensional spaces is dramatically different from
anything we can draw or imagine. For example, in Mercer’s construction of
K(x,x′) =

∑
j≥1 φj(x)φj(x

′), the different feature dimensions j = 1, 2, . . . are
by no means on equal terms, as far as concepts like distance or volume are
concerned. For most commonly used infinite-dimensional kernel functions, the
contributions φj(x)φj(x

′) rapidly become extremely small, and only a small
number of initial features determine most of the predictions. A good intuition
about kernel methods is that they behave like (easy to use) linear methods of
flexible dimensionality. As the number of data points n grows, a larger (but
finite) number of the feature space dimensions will effectively be used.

Examples of Kernel Functions

Let us look at some examples. Maybe the simplest kernel function is K(x,x′) =
xTx′, the standard inner product. Moreover, for any finite-dimensional feature
map φ(x) ∈ Rp (p < ∞), K(x,x′) = φ(x)Tφ(x′) is a kernel function. Since
any kernel matrix of this type can at most have rank p, such kernel functions
are positive semidefinite, but not positive definite. However, even for finite-
dimensional kernels, it can be much simpler to work with K(x,x′) directly
than to evaluate φ(x). For example, recall polynomial regression estimation
from Section 4.1, giving rise to a polynomial feature map φ(x) = [1, x, . . . , xr]T

for x ∈ R. Now, if x ∈ Rd is multivariate, a corresponding polynomial feature

9.2 Support Vector Machines 161

map would consists of very many features. Is there a way around their explicit
representation? Consider the polynomial kernel

K(x,x′) =
(
xTx′

)r
=

∑
j1,...,jr

(xj1 . . . xjr)
(
x′j1 . . . x

′
jr

)
.

For example, if d = 3 and r = 2, then

K(x,x′) = (x1x
′
1 + x2x

′
2 + x3x

′
3)

2
= x2

1(x′1)2 + x2
2(x′2)2 + x2

3(x′3)2

+ 2(x1x2)(x′1x
′
2) + 2(x1x3)(x′1x

′
3) + 2(x2x3)(x′2x

′
3),

a feature map of which is

φ(x) =

x2
1

x2
2

x2
3√

2x1x2√
2x1x3√
2x2x3

 .

If x ∈ Rd, K(x,x′) is evaluated in O(d), independent of r. Yet it is based on
a feature map φ(x) ∈ Rdr , whose dimensionality6 scales exponentially in r. A
variant is given by

K(x,x′) =
(
xTx′ + ε

)r
, ε > 0,

which can be obtained by replacing x by [xT ,
√
ε]T above. The feature map now

runs over all subranges 1 ≤ j1 ≤ · · · ≤ jk ≤ d, 0 ≤ k ≤ r.
A frequently used infinite-dimensional (positive definite) kernel is the Gaussian
(or radial basis function, or squared exponential) kernel:

K(x,x′) = e−
τ
2 ‖x−x

′‖2 , τ > 0. (9.6)

We establish it as a kernel function in Section 9.2.4. The Gaussian is an example
of a stationary kernel, these depend on x−x′ only. We can weight each dimension
differently:

K(x,x′) = e−
1
2

∑d
j=1 τj(xj−x

′
j)

2

, τ1, . . . τd > 0.

Free parameters in kernels are hyperparameters, much like C in the soft margin
SVM or the noise variance σ2 in Gaussian linear regression, choosing them is a
model selection problem (Chapter 10).

Choosing the right kernel is much like choosing the right model. In order to do
it well, you need to know your options. Kernels can be combined from others in
many ways, [6, ch. 6.2] gives a good overview. It is also important to understand
statistical properties implied by a kernel. For example, the Gaussian kernel pro-
duces extremely smooth solutions, while other kernels from the Matérn family
are more flexible. Most books on kernel methods will provide some overview,
see also [41].

One highly successful application domain for kernel methods concerns problems
where input points x have combinatorial structure, such as chains, trees, or

6More economically, we can run over all 1 ≤ j1 ≤ · · · ≤ jr ≤ d.

162 9 Support Vector Machines

graphs. Applications range from bioinformatics over computational chemistry
to structured objects in computer vision. The rationale is that it is often simpler
and much more computationally efficient to devise a kernel function K(x,x′)
than a feature map φ(x). This field was seeded by independent work of David
Haussler [22] and Chris Watkins.

A final remark concerns normalization. As noted in Chapter 2 and above in
Section 9.1, it is often advantageous to use normalized feature maps ‖φ(x)‖ = 1.
What does this mean for a kernel?

K(x,x) = φ(x)Tφ(x) = 1.

Therefore, a kernel function gives rise to a normalized feature map if its diagonal
entries K(x,x) are all 1. For example, the Gaussian kernel (9.6) is normalized.
Moreover, if K(x,x′) is a kernel, then so is

K(x,x′)√
K(x,x)K(x′,x′)

(see Section 9.2.4), and the latter is normalized. It is a good idea to use nor-
malized kernels in practice.

9.2.4 Techniques: Properties of Kernels (*)

In this section, we review a few properties of kernel functions and look at some
more examples. The class of kernel functions has formidable closedness prop-
erties. If K1(x,x′) and K2(x,x′) are kernels, so are cK1 for c > 0, K1 + K2

and K1K2. You will have no problem confirming the the first two. The third
is shown at the end of this section. Moreover, f(x)K1(x,x′)f(x′) is a kernel
function as well, for any f(x). This justifies kernel normalization, as discussed
at the end of Section 9.2.3. If Kr(x,x

′) is a sequence of kernel functions con-
verging pointwise to K(x,x′) = limr→∞Kr(x,x

′), then K(x,x′) is a kernel
function as well. Finally, if K(x,x′) is a kernel and ψ(y) is some mapping into
Rd, then (y ,y′) 7→ K(ψ(y),ψ(y′)) is a kernel as well.

Let us show that the Gaussian kernel (9.6) is a valid kernel function. First,
(xTx′)r is a kernel for every r = 0, 1, 2, . . . , namely the polynomial kernel from
Section 9.2.3. By the way, K(x,x′) = 1 is a kernel function, since its kernel
matrices 11T are positive semidefinite. Therefore,

Kr(x,x
′) =

r∑
j=0

1

j!
(xTx′)j

are all kernels, and so is the limit ex
Tx′ = limr→∞Kr(x,x

′). More general, if
K(x,x′) is a kernel, so is eK(x,x′). Now,

e−
τ
2 ‖x−x

′‖2 = e−
τ
2 ‖x‖

2

eτx
Tx′e−

τ
2 ‖x

′‖2 .

The middle is a kernel, and we apply our normalization rule with f(x) =

e−
τ
2 ‖x‖

2

. The Gaussian kernel is infinite-dimensional (positive definite), al-
though we will not show this here.

9.2 Support Vector Machines 163

Another way to think about kernels is in terms of covariance functions. A ran-
dom process is a set of random variables a(x), one for each x ∈ Rd. Its covariance
function is

K(x,x′) = Cov[a(x), a(x′)] = E [(a(x)− E[a(x)])(a(x′)− E[a(x′)])] .

Covariance functions are kernel functions. For some set {xi}, let a = [a(xi) −
E[a(xi)]] ∈ Rn be a random vector. Then, for any v ∈ Rn:

vTKv = vTE
[
aaT

]
v = E

[
(vTa)2

]
≥ 0.

Finally, there are some symmetric functions which are not kernels. One example
is

K(x,x′) = tanh
(
αxTx′ + β

)
.

In an attempt to make SVMs look like multi-layer perceptrons, this non-kernel
was suggested and is shipped to this day in many SVM toolboxes7. Running
the SVM with “kernels” like this spells trouble. Soft margin SVM is a convex
optimization problem only if kernel matrices are positive semidefinite, codes will
typically crash if that is not the case. A valid “neural networks” kernel is found
in [47], derived from the covariance function perspective.

Finally, why is K1(x,x′)K2(x,x′) a kernel? This argument is for interested
readers only, it can be skipped at no loss. We have to show that for two positive
semidefinite kernel matrices K1,K2 ∈ Rn×n the Schur (or Hadamard) product
K1◦K2 = [K1(xi,xj)K2(xi,xj)] (Section 2.4.3) is positive semidefinite as well.
To this end, we consider the Kronecker product K1 ⊗K2 = [K1(xi,xj)K2] ∈
Rn2×n2

. This is positive semidefinite as well. Namely, we can writeK1 = V 1V
T
1 ,

K2 = V 2V
T
2 , then

K1 ⊗K2 = (V 1 ⊗ V 2)(V 1 ⊗ V 2)T .

But the Schur product is a square submatrix of K1 ⊗K2, a so called minor.
In other words, for some index set J ⊂ {1, . . . , n2} of size |J | = n: K1 ◦K2 =
(K1 ⊗K2)J , so that for any v ∈ Rn:

vT (K1 ◦K2)v = zT (K1 ⊗K2)z ≥ 0, z = I ·,Jv ∈ Rn
2

.

The same proof works to show that the positive definiteness of K1, K2 implies
the positive definiteness of K1 ◦K2, a result due to Schur.

9.2.5 Summary

Let us summarize the salient points leading up to support vector machine bi-
nary classification. We started with the observation that for a linearly separable
dataset, many different separating hyperplanes result in zero training error.
Among all those potential solutions, which could arise as outcome of the per-
ceptron algorithm, there is one which exhibits maximum stability against small
displacements of patterns xi, by attaining the maximum margin γD(w, b). Pur-
suing this lead, we addressed a number of problems:

7It is even on Wikipedia (en.wikipedia.org/wiki/Support vector machine).

