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Quick overview
N

Overview
Trees are very flexible models

... but they may lead to overfitting (high variance)



Quick Look at a Random Forest
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— Training: Learn M trees on different subsets of training data

— Prediction: Average of prediction of each tree



Model Averaging
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Key Concept: Model Averaging

We can learn multiple predictors

f1, fo, ..., fa: predictions of M different models we trained

If we take the f; to be identically distributed, with
V(fi)=E [ff] =0”
C(fi, [;) =Elfi fil=po® ifi#]

Single Predictor Averaged Predictor

| M
z1 = fi ZMZMZfi

V(z1) = 0” Viem) = 702 + p L=to?



Model Averaging
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Key Concept: Model Averaging

Single Predictor Averaged Predictor
| M
= h M = i Z Ji
V(z1) = o* Vien) = 2o? + pM=152
V(Zl) . M

Variance reduction ratio: =
V(ZM) 1—|—,0(M—1)
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N
Key Concept: Model Averaging

V(Zl) - M
V(izm) 1+p(M—1)

Variance reduction ratio:

Vi(z1)

It M — oo then
V(zm)

I4
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Therefore, if we use model averaging we want

— Large number M of predictors

— Low correlation between them
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Random Forests

Train an ensemble of trees on the training data

— Provide a mechanism to help decorrelate trees
— reduce prediction variance

— Output is average of all trees
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Random Forests — 'Just' a mix of two procedures
Decorrelating trees

1) Randomize training data: Bagging
2) Randomize feature space: =~ Randomized feature selection
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Random Forests
Decorrelating trees

1) Randomize training data: Bagging

Bagging Model Construction

Input: Training samples X = {(x;,y:)}Y,
Predictor learning procedure L : {X} — H (e.g. tree learning function)

Number of learners M

: for7=1to M do

1

2 Generate X by randomly sampling N samples with replacement from X
3: Learn f;(-) = L(X?)
4

: end for

M
1
5: return prediction function z(x) = i Z fi(x)
1=1
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Random Forests
Decorrelating trees

1) Randomize training data: Bagging

Generate X* by randomly sampling N samples with replacement from X

— Also known as Bootstrapping: simulates different draws of data
from the original training data.

— Probability of choosing a sample at least once = 63%
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Random Forests
Decorrelating trees

1) Randomize training data: Bagging

Generate X* by randomly sampling N samples with replacement from X

— Also known as Bootstrapping: simulates different draws of data
from the original training data.

— Probability of choosing a sample at least once = 63%

Example: all training data X = {x1, X2, X3, X4, X5}
— Bootstrapped sets:  {X1, X5, X5, X3, X5 } {x4,%x1,X5,X5,X4}

{X4,X1,X2,X1,X1} {X5,X4,X2,X5,X1}
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Random Forests — 'Just' a mix of two procedures
Decorrelating trees

1) Randomize training data: Bagging
2) Randomize feature space: =~ Randomized feature selection
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Random Forests

Decorrelating trees

2) Randomize feature space: Randomized feature selection

When learning a split:
instead of searching for k over all D possible features

— search on a reduced random subset

X > T

N
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Random Forests
Decorrelating trees

2) Randomize feature space: Randomized feature selection

Learn split on training data X, with random subspace search

Input: Training samples X = {(x;,v:)}Y,, x; € RV

Number of features to search myry < D

1: @ = sample myry values without replacement from {1...D}

2: for k € @ do
3: Find best split for feature k: 7, = argmin I3t (X, k, 7)

4: Compute cost of this split: I = Ispic (X, k, 7%)
5. end for

6: return k and 7 that got the minimum impurity Igp1it ()
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Random Forests — 'Just' a mix of two procedures

Decorrelating trees

1) Randomize training data: Bagging
2) Randomize feature space: =~ Randomized feature selection

That's all RFs are about.

Therefore, the parameters of a RF are:
— Maximum tree depth
— Number of trees (Forest size)

- Value of m,. Typically m, = sqrt(D)
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Random FOl’e StS - TOY eXample [from Jessie Li's slides from Penn State University]

Training data
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Random FOI’C StS - TOY eXample [from Jessie Li's slides from Penn State University]

Single Decision Tree Prediction
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Random FOI’C StS - TOY eXample [from Jessie Li's slides from Penn State University]

Random Forest w/100 trees
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Random Forests — 'Just' a mix of two procedures

Effect of m,,,
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FIGURE 15.9. Correlations between pairs of trees drawn by a random-forest
regression algorithm, as a function of m. The boxplots represent the correlations
at 600 randomly chosen prediction points x. [HTF]
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Random Forests — 'Just' a mix of two procedures

Effect of m,., Random Forest Ensemble
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Conclusion
Model Averaging aims at reducing variance through averaging

— Random Forests is one example, which trains multiple trees

* Bagging & random sub-space search improves stability

— It you are interested, a few more cool things about RFs:
* Out-of-bag examples/cross-validation [HTF 15.3.1]
* Computing Variable/Feature Importance [HTF 15.3.2]
* Partial Dependency Plots [HTF 15.4.3]
* Adaptive Nearest Neighbors [HTF 10.13.2]



