
Mock midterm for Pattern Classification and Machine Learning, 2015

Room INJ218, Thursday Nov. 12 from 14:15 to 16:00

Teacher: Mohammad Emtiyaz Khan

A few important informations:

• The exam is worth a total of 30 marks.

• You are not allowed to enter after 14:30 and leave before 15:00.

• No electronic devices are allowed except a calculator. Make sure that your

calculator is only a calculator and cannot be used for any other purpose.

• Please leave your other belongings in front of the room (or at the back).

• You are not allowed to talk to others

• The mock midterm is not graded or corrected by the teaching team.

• Solutions will be available in December.

• There are extra pages at the end of the exam. Ask us if you need more pages.

• := means “defined as”.

• For derivations, clearly explain your derivation step by step. In the final

exam you will be marked for steps as well as for the end result.

• We will denote the output data vector by y which is a vector that contains

all yn, and the feature matrix by X which is a matrix containing features xTn
as rows. Also, x̃n = [1,xTn ]T .
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1 Kernels [5 marks in total]

Consider the following function over feature vectors xi,xj ∈ RD:

K(xi,xj) = (1 + axTi xj)
2, a ∈ R, a > 0 (1)

(A) [2 marks] Name two properties the function K(xi,xj) must have for it to

be a kernel.

(B) [3 marks] Show that the function K(xi,xj) is a kernel.

Hint: The proof might be easier if you expand (1 + axTi xj)
2 and use the

fact that the functions xTi xj and (xTi xj)
2 are kernels and follow the two

properties.
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2 Multiple-output regression [5 marks in total]

Suppose we have N regression training-pairs, but instead of one output for each

input vector xn ∈ RD, we now have multiple outputs yn = [yn1, yn2, . . . , ynK ]T ∈
RK . For each output ynk, we wish to fit a separate linear model:

ynk ≈ fk(xn) = βk1xn1 + βk2xn2 + . . .+ βkDxnD = βTk xn (2)

where βk is the vector of βkd for d = 1, 2, . . . , D. Note that there is no bias term.

Our goal is to estimate β = [βT1 , . . . ,β
T
K ]T for which we choose to minimize the

following cost function:

L(β) :=
K∑
k=1

N∑
n=1

1

2σ2
k

(
ynk − βTk xn

)2
+

1

2σ2
0

K∑
k=1

D∑
d=1

β2
kd (3)

where σk > 0 are known real-valued scalars for k = 0, 1, . . . , K. We denote the set

of all σk by σ.

(A) [1 mark] Derive the normal equation for β∗
k that minimizes L.

(B) [2 marks] Discuss the conditions under which the minimum β∗
k is unique.

Assuming the conditions hold, write the expression for the unique solution.

(C) [2 marks] Let β∗ be the vector of all β∗
k. Derive a probabilistic model under

which the solution β∗ is the maximum-a-posteriori (MAP) estimate. You

must give expressions for the likelihood p(y|X,β,σ) and the prior p(β|σ).
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3 Mixture of Linear Regression [10 marks in total]

In Project-I, you worked on a regression dataset with two or more distinct clusters.

For such datasets, a mixture of linear regression models is preferred over just one

linear regression model.

Consider a regression dataset with N pairs {yn,xn}. Similar to Gaussian mixture-

model (GMM), let rn ∈ {1, 2, . . . , K} index the mixture component. Distribution

of the output yn under the k’th linear model is defined as follows:

p(yn|xn, rn = k,β) := N (yn|βTk x̃n, 1) (4)

Here, βk is the regression parameter vector for the k’th model with β being a

vector containing all βk. Also, x̃n = [1,xTn ]T .

(A) [2 marks] Define rn to be a binary vector of length K such that all the

entries are 0 except a k’th entry i.e. rnk = 1, implying that xn is assigned to

the k’th mixture. Rewrite the likelihood p(yn|xn,β, rn) in terms of rnk.

(B) [1 mark] Write the expression for the joint distribution p(y|X,β, r) where

r is the set of all r1, r2, . . . , rN .

(C) [3 marks] Assume that rn follows a multinomial distribution p(rn = k|π) =

πk, with π = [π1, π2, . . . , πK ]. Derive the marginal distribution p(yn|xn,β,π)

obtained after marginalizing rn out.

(D) [2 marks] Write the expression for the maximum likelihood estimator L(β,π) :=

− log p(y|X,β,π) in terms of data y and X, and parameters β and π.

(E) [2 marks] Is L jointly-convex with respect to β and π? Is the model iden-

tifiable? Prove your answers.
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4 Multi-class classification [5 marks in total]

Suppose we have a classification dataset with N pairs {yn,xn} but now yn is a

categorical variable, i.e. yn ∈ {1, 2, . . . , K} where K is the number of classes. We

wish to fit a linear model and in the similar spirit to logistic regression, we will

use a multinomial logit distribution to map linear inputs to a categorical output.

We will define ηnk = x̃Tnβk for all k = 1, 2, . . . , K − 1 and then compute the

probability of output,

p(yn = k|xn,β) =
eηnk∑K
j=1 e

ηnj

(5)

For identifiability reasons, we set ηnK = 0, therefore βK = 0 and we need to

estimate β1,β2, . . . ,βK−1.

Similar to logistic regression, we will assume that each yn is i.i.d. i.e.

p(y|X,β) =
N∏
n=1

p(yn|xn,β) (6)

Following the derivation of logistic regression,

(A) [2 marks] Derive the log-likelihood for this model.

(B) [2 marks] Derive the gradient with respect to βk.

(C) [1 marks] Show that the negative of the log-likelihood is convex.
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5 Proportional Hazard Model [5 marks in total]

We have a regression dataset with N pairs {yn,xn} where the output is an ordered

output i.e. yn ∈ {1, 2, 3, 4, . . . , K} (as opposed to an un-ordered output in the

standard multi-class classification). We wish to fit a linear model.

In the proportional hazard model, we use the following probability distribution,

p(yn = k|xn,β,θ) =
exp(ηnk)∑K
j=1 exp(ηnj)

, where ηnk = θk + βTxn,∀k (7)

Here, θk ∈ R and are ordered, i.e. θ1 > θ2 > . . . > θK . We will denote the vector

of all θk by θ. Similar to a standard regression model, we assume that all pairs

{yn,xn} are i.i.d.

Answer the following questions. Clearly show all steps of your derivations.

(A) [2 marks] Is p(yn|xn,β,θ) a valid distribution? Prove your answer.

Hint: You need to prove two properties to be able to show this.

(B) [2 marks] Derive the log-likelihood for this model.

(C) [1 marks] Show that the negative of the log-likelihood is convex w.r.t. all

θk and β.
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Notes
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