Mock midterm for Pattern Classification and Machine Learning, 2015
Room INJ218, Thursday Nov. 12 from 14:15 to 16:00
Teacher: Mohammad Emtiyaz Khan

A few important informations:

e The exam is worth a total of 30 marks.
e You are not allowed to enter after 14:30 and leave before 15:00.

e No electronic devices are allowed except a calculator. Make sure that your

calculator is only a calculator and cannot be used for any other purpose.
e Please leave your other belongings in front of the room (or at the back).
e You are not allowed to talk to others
e The mock midterm is not graded or corrected by the teaching team.
e Solutions will be available in December.
e There are extra pages at the end of the exam. Ask us if you need more pages.
e := means “defined as”.

e For derivations, clearly explain your derivation step by step. In the final

exam you will be marked for steps as well as for the end result.

e We will denote the output data vector by y which is a vector that contains
all y,,, and the feature matrix by X which is a matrix containing features x’

as rows. Also, X, = [1,xI]T.



1 Kernels [5 marks in total]

Consider the following function over feature vectors x;,x; € RP:

K(x;,x;) = (1+ axiij)Q, aeR, a>0 (1)

(A) [2 marks] Name two properties the function K(x;,x;) must have for it to
be a kernel.

(B) [3 marks] Show that the function K (x;,x;) is a kernel.

Hint: The proof might be easier if you expand (1 + ax]x;)? and use the
T 2

fact that the functions x!x; and (x]x;)? are kernels and follow the two

properties.



2 Multiple-output regression [5 marks in total]

Suppose we have N regression training-pairs, but instead of one output for each
input vector x,, € R?, we now have multiple outputs Yo = [Ynls Yn2s - - Unk|L €

R¥. For each output y,:, we wish to fit a separate linear model:

Ynk = fr(Xn) = BriZn1 + Bronz + - .. + Bepap = B Xy (2)
where 3, is the vector of [ for d =1,2,..., D. Note that there is no bias term.

Our goal is to estimate 3 = [B1,...,B%|" for which we choose to minimize the

following cost function:
K N | KD
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where o5, > 0 are known real-valued scalars for £k = 0,1,..., K. We denote the set

of all o}, by o.

(A) [1 mark] Derive the normal equation for 8; that minimizes L.

(B) [2 marks] Discuss the conditions under which the minimum ;, is unique.

Assuming the conditions hold, write the expression for the unique solution.

(C) [2 marks] Let 8" be the vector of all 3;. Derive a probabilistic model under
which the solution 3" is the maximum-a-posteriori (MAP) estimate. You

must give expressions for the likelihood p(y|X, 3, ) and the prior p(8|o).



3 Mixture of Linear Regression [10 marks in total]

In Project-I, you worked on a regression dataset with two or more distinct clusters.
For such datasets, a mixture of linear regression models is preferred over just one

linear regression model.

Consider a regression dataset with N pairs {y,, X, }. Similar to Gaussian mixture-
model (GMM), let r, € {1,2,..., K} index the mixture component. Distribution
of the output y, under the £’th linear model is defined as follows:

P(YnlXn,mn =k, B) = N(yn|ﬁ;€§na 1) (4)

Here, B, is the regression parameter vector for the k’th model with 3 being a

vector containing all 3,. Also, x,, = [1,x%]7.

(A) [2 marks] Define r,, to be a binary vector of length K such that all the
entries are 0 except a k’'th entry i.e. r,, = 1, implying that x,, is assigned to

the k’th mixture. Rewrite the likelihood p(y,|x,, 8, r,) in terms of 7.

(B) [1 mark] Write the expression for the joint distribution p(y|X, 3,r) where

r is the set of all ry,ro, ... ry.

(C) [3 marks] Assume that r, follows a multinomial distribution p(r, = k|m) =
T, with 7w = [my, 79, ..., mk]. Derive the marginal distribution p(y,|x,, 8, )

obtained after marginalizing r, out.

(D) [2 marks] Write the expression for the maximum likelihood estimator £(3, 7) :=

—logp(y|X, 3, 7) in terms of data y and X, and parameters 8 and .

(E) [2 marks] Is £ jointly-convex with respect to 8 and 7?7 Is the model iden-

tifiable? Prove your answers.



4 Multi-class classification [5 marks in total]

Suppose we have a classification dataset with N pairs {y,,x,} but now y, is a
categorical variable, i.e. y, € {1,2,..., K} where K is the number of classes. We
wish to fit a linear model and in the similar spirit to logistic regression, we will

use a multinomial logit distribution to map linear inputs to a categorical output.

We will define ., = X.8, for all k = 1,2,..., K — 1 and then compute the
probability of output,

(v = Kl B) = — (
n=k|Xn,0) = ——— 5
p(y S )

For identifiability reasons, we set n,x = 0, therefore 3, = 0 and we need to
estimate 81,8y, ..., Brx_1-

Similar to logistic regression, we will assume that each y, is i.i.d. i.e.

N

p(yIX, 8) = [ [ p(ynlxn, B) (6)

n=1
Following the derivation of logistic regression,
(A) [2 marks] Derive the log-likelihood for this model.

(B) [2 marks] Derive the gradient with respect to 3.

(C) [1 marks] Show that the negative of the log-likelihood is convex.



53 Proportional Hazard Model [5 marks in total]

We have a regression dataset with N pairs {y,, X, } where the output is an ordered
output i.e. y, € {1,2,3,4,..., K} (as opposed to an un-ordered output in the

standard multi-class classification). We wish to fit a linear model.
In the proportional hazard model, we use the following probability distribution,

exp(n,
p(yn = k’Xnaﬁ>0) = K p<7] k>

) where Mk = ek + BTXn7Vk (7)
Zj:l exp(7n;)

Here, 0, € R and are ordered, i.e. 61 > 0y > ... > 0. We will denote the vector
of all §; by 6. Similar to a standard regression model, we assume that all pairs

{Yn,x,} are ii.d.

Answer the following questions. Clearly show all steps of your derivations.

(A) [2 marks] Is p(y,|x,,3,0) a valid distribution? Prove your answer.

Hint: You need to prove two properties to be able to show this.
(B) [2 marks] Derive the log-likelihood for this model.

(C) [1 marks] Show that the negative of the log-likelihood is convex w.r.t. all
0, and (3.



Notes



Notes



