Multi-Layer Perceptron

Mohammad Emtiyaz Khan EPFL

Dec. 3, 2015

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
©Mohammad Emtiyaz Khan 2015

Multi-Layer Perceptron (MLP)

This is also known as feed-forward neural network and can be reprosented graphically as follows:

$$
\text { deep } \rightarrow
$$

$\mathbf{x}_{n} \rightarrow \mathbf{a}_{n}^{(1)} \rightarrow \mathbf{z}_{n}^{(1)} \stackrel{\mid \rightarrow}{\mid} \mathbf{a}_{n}^{(2)} \rightarrow \mathbf{z}_{n}^{(2)} \stackrel{\mid \rightarrow}{\bullet} \rightarrow \mathbf{z}_{n}^{(K-1)} \stackrel{\mid}{\rightarrow} \rightarrow \mathbf{y}_{n}$

where $\left\{y_{n}, \mathbf{x}_{n}\right\}$ is the n 'th inputoutput pair, $\mathbf{z}_{n}^{(k)}$ is the k 'th hidden vector, $\mathbf{a}_{n}^{(k)}$ is the corresponding
activation. There are a total of K layers.
$a_{m n}^{(1)}=\beta_{m}^{\top} \widetilde{x}_{n}$
$z_{m n}^{(1)}=h\left(a_{m n}^{(1)}\right)$
For the k 'th layer, we obtain the m 'th activation $a_{m n}^{(k)}$ and the corresponding hidden variable $z_{m n}^{(k)}$, as shown below:
$a_{m n}^{(k)}=\left(\boldsymbol{\beta}_{m}^{(k)}\right)^{T} \mathbf{z}_{n}^{(k-1)}, \quad z_{m n}^{(k)}=h\left(a_{m n}^{(k)}\right)$

where $\mathbf{z}_{n}^{(k-1)}$ is the hidden vector for the previous layer. For the first layer, we set $\mathbf{z}_{n}^{(0)}=\mathbf{x}_{n}$. For the last layer, we use a link funcdion to map $\mathbf{z}_{n}^{(K-1)}$ to the output \mathbf{y}_{n}.

Note that a 1-Layer MLP is simply a generalization of linear/logistic regression.

Defining $\mathbf{B}^{(k)}$ as a matrix with rows $\left(\boldsymbol{\beta}_{m}^{(k)}\right)^{T}$, we can express the computation of activation and hidden sectors as follows:
$\mathbf{a}_{n}^{(k)}=\mathbf{B}^{(k)} \mathbf{z}_{n}^{(k-1)}, \quad \mathbf{z}_{n}^{(k)}=h\left(\mathbf{a}_{n}^{(k)}\right)$
In a more compact notation, we can express the input-output relationship as follows:

$\hat{y}_{n}=g\left(\left(\boldsymbol{\beta}^{(K-1)}\right)^{T} * h\left(\mathbf{B}^{(K-2)} * h\left(* \ldots * h\left(\mathbf{B}^{(1)} * \mathbf{x}_{n}\right)\right)\right)\right.$,
where g is an appropriate link function to match the output.

$$
\left.\begin{array}{rl}
\sum_{n=1}^{N}\left(y_{n}-\hat{y}_{w}\right.
\end{array}\right)^{2}
$$

struction of the function $|x|$ at $N=$ 50 data points sampled at the blue dots. The trained network has 2 layers and 3-hidden variables with $\tanh ()$ activation function.

Optimization and Back-propagation
We can learn parameters B using stochastic gradient-descent.

$$
\mathcal{L}=\sum_{n=1}^{N}\left(y_{n}-f\left(\underline{x}_{n}\right)\right)^{2}
$$

Gradient computation can be complicated due to the deep structure of the network. We can use back-propagation to simplify the computation. The key-idea is to express the derivatives in terms of activations $\mathbf{a}_{n}^{(k)}$ and hidden variables $\mathbf{z}_{n}^{(k)}$ using the chain rule. Below is the outline of the algorithm:

$\rightarrow \frac{\widehat{\partial \delta}}{\partial \beta}=[10,000]$

Step 1: Compute $\mathbf{a}_{n}^{(k)}$ and $\mathbf{z}_{n}^{(k)}$ using forward propagation.

Step 2: Compute $\boldsymbol{\delta}_{n}^{(k)}:=\partial \mathcal{L} / \partial \mathbf{a}_{n}^{(k)}$ using backward propagation:
$\boldsymbol{\delta}_{n}^{(k-1)}=\operatorname{diag}\left[\mathbf{h}^{\prime}\left(\mathbf{a}_{n}^{(k)}\right)\right]\left(\mathbf{B}^{(k)}\right)^{T} \boldsymbol{\delta}_{n}^{(k)}$
Step 3: Compute $\partial \mathcal{L} / \partial \mathbf{B}^{(k)}$ using the above derivatives.
$\frac{\partial \mathcal{L}}{\partial \mathbf{B}^{(k)}}=\sum_{n} \boldsymbol{\delta}_{n}^{(k)}\left(\mathbf{z}_{n}^{(k)}\right)^{T}$

Tricks

Obtaining a good generalization error with neural networks and avoiding overfitting requires a lot of hacks and tricks. A good summary of these are given in Bottou's paper "Stochastic gradient tricks". In addition, initialization seems to play a huge role in improving the performance. See the following paper "On the importance of initialization and momentum in deep learning" by Ilya Sutskever et. al.

