
Multi-Layer Perceptron

Mohammad Emtiyaz Khan
EPFL

Dec. 3, 2015

c©Mohammad Emtiyaz Khan 2015

Multi-Layer Perceptron (MLP)

This is also known as feed-forward
neural network and can be repre-
sented graphically as follows:

xn → a(1)n → z(1)n → a(2)n → z(2)n → . . .→ z(K−1)n → yn

where {yn,xn} is the n’th input-

output pair, z
(k)
n is the k’th hidden

vector, a
(k)
n is the corresponding

activation. There are a total of K
layers.

For the k’th layer, we obtain the

m’th activation a
(k)
mn and the cor-

responding hidden variable z
(k)
mn, as

shown below:

a(k)mn =
(
β(k)
m

)T
z(k−1)n , z(k)mn = h

(
a(k)mn

)

where z
(k−1)
n is the hidden vector

for the previous layer. For the

first layer, we set z
(0)
n = xn. For

the last layer, we use a link func-

tion to map z
(K−1)
n to the output yn.

Note that a 1-Layer MLP is simply
a generalization of linear/logistic re-
gression.

1

Defining B(k) as a matrix with rows
(β(k)

m)T , we can express the compu-
tation of activation and hidden vec-
tors as follows:

a(k)n = B(k)z(k−1)n , z(k)n = h
(
a(k)n

)

In a more compact notation, we can
express the input-output relation-
ship as follows:

ŷn = g((β(K−1))T ∗ h(B(K−2) ∗ h(∗ . . . ∗ h(B(1) ∗ xn))),

where g is an appropriate link
function to match the output.

An illustration below shows recon-
struction of the function |x| at N =
50 data points sampled at the blue
dots. The trained network has 2
layers and 3-hidden variables with
tanh() activation function.

2

Optimization and Back-propagation

We can learn parameters B using
stochastic gradient-descent.

Gradient computation can be
complicated due to the deep struc-
ture of the network. We can use
back-propagation to simplify the
computation. The key-idea is to
express the derivatives in terms of

activations a
(k)
n and hidden variables

z
(k)
n using the chain rule. Below is

the outline of the algorithm:

3.3 Error Backpropagation 39

need the chain rule:

r(1)
q =

∂Ei
∂a(2)

· ∂a
(2)

∂a
(1)
q

= r(2) ∂

∂a
(1)
q

h1∑

k′=1

w
(2)
k′ g(a

(1)
k′) = r(2)w(2)

q g′(a(1)
q).

This means we compute r
(1)
q in terms of r(2), multiplying it with the weight

w
(2)
q linking the output and q-th hidden unit, then by the derivative g′(a(1)

q).
Note the remarkable symmetry with the activation variables. For them, a(2) is

computed in terms of a
(1)
q , multiplied by w

(2)
q as well.

Figure 3.3: Forward pass (left) and backward pass (right) of error backpropa-
gation algorithm for a two-layer MLP. Notice the symmetry between the two

passes, and how information g′(a(1)
q) computed during the forward pass and

stored locally at each node is recycled during the backward pass.

To see the backpropagation technique in its full glory, let us consider a network of
at least three layers. The relationship between gradient terms and error variables

remain the same. To work out r
(1)
q , note that the q-th unit in the first layer is

now connected to h2 second layer units. We have to use the chain rule with
respect to the error variables for all of them:

r(1)
q =

h2∑

j=1

∂Ei

∂a
(2)
j

·
∂a

(2)
j

∂a
(1)
q

=

h2∑

j=1

r
(2)
j w

(2)
jq g

′(a(1)
q) = g′(a(1)

q)

h2∑

j=1

w
(2)
jq r

(2)
j . (3.3)

Compare this to the equation

a
(2)
j =

h1∑

q=1

w
(2)
jq g(a(1)

q) + b
(2)
j

to appreciate the symmetry between the forward propagation of the activation
variables and the subsequent backward propagation of the error variables. These
two passes are illustrated in Figure 3.3. The backpropagation technique to com-
pute the gradient term ∇wEi for a L-layer network can be summarized as
follows:

3

Step 1: Compute a
(k)
n and z

(k)
n using

forward propagation.

Step 2: Compute δ(k)
n := ∂L/∂a(k)n

using backward propagation:

δ(k−1)
n = diag

[
h′(a(k)n

] (
B(k)

)T
δ(k)
n

Step 3: Compute ∂L/∂B(k) using
the above derivatives.

∂L
∂B(k)

=
∑

n

δ(k)
n

(
z(k)n

)T

Tricks
Obtaining a good generalization er-
ror with neural networks and avoid-
ing overfitting requires a lot of hacks
and tricks. A good summary of
these are given in Bottou’s paper
“Stochastic gradient tricks”. In ad-
dition, initialization seems to play a
huge role in improving the perfor-
mance. See the following paper “On
the importance of initialization and
momentum in deep learning” by Ilya
Sutskever et. al.

4

