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Classification example

In many cases, a linear model may
not be optimal. There are three con-
founding factors: perhaps our model
is too rigid (bias) ersecond, or per-
haps it is too flexible (variance), or
perhaps some errors are just un-
avoidable (the noise).

Linear Regression of 0/1 Response
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FIGURE 2.1. A classification example in two di-
mensions. The classes are coded as a binary variable
( = 0, = 1), and then fit by linear re-
gression. The line is the decision boundary defined by
xTB = 0.5. The orange shaded region denotes that part
of input space classified as , while the blue region
15 classified as

*All figures taken from Chapter 2 HTF



k-Nearest Neighbor (k-ININ)
The k-NN prediction for an x, is,

i)=Y w

where nbhi(x) is the neighborhood
of x defined by the k closest points
X, in the training data.

We show results for K = 1 and k£ =
15 respectively.

1-Nearest Neighbor Classifier
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FIGURE 2.3. The same classification example in two
dimensions as in Figure 2.1. The classes are coded as
a binary variable ( =0, = 1), and then
predicted by 1-nearest-neighbor classification.

15-Nearest Neighbor Classifier




Bias-variance revisited

How should train and test error vary with k7
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FIGURE 2.4. Misclassification curves for the simula-
tion example used in Figures 2.1, 2.2 and 2.3. A single
training sample of size 200 was used, and a test sample
of size 10,000. The orange curves are test and the blue
are training error for k-nearest-neighbor classification.
The results for linear regression are the bigger orange
and blue squares at three degrees of freedom. The pur-
ple line is the optimal Bayes error rate.
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Curse of dimensionality

” A few asef+] ings o

™ know oy ML”

According to Pedro Domingos:

“Intuitions fail in high dimensions”. 1 1

This is also known as the curse of I \l

dimensionality (Bellman, 1961).

Claim 1: “Generalizing correctly
becomes exponentially harder as
the dimensionality grows because
fixed-size training sets cover a dwin-
dling fraction of the input space.”

The expected edge length is ep(r) =
/P e

—

€10(0.01) = 0.63, e10(0.1) = 0.80

ie. to capture 1% or 10% of the
data, we must cover 63% or 80% of
the range of each input variable.
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FIGURE 2.6. The curse of dimensionality is well il-

lustrated by a subcubical neighborhood for uniform data

i a unit cube. The figure on the right shows the

side-length of the subcube needed to capture a fraction

r of the volume of the data, for different dimensions p.

In ten dimensions we need to cover 80% of the mnge’]
[of each coordinate to capture 10% of the data.
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As a result, the sampling density Vo Vo
is proportional to NVP ie. if r >

N; = 100 is the sample size for a

l-input problem, then Njg = 100

is required for the same sampling

density with 10 inputs. (Woyrst case)

Claim 2: In high-dimension,
data-points are far from each other.
Consequently, “as the dimensional-
ity increases, the choice of nearest
neighbor becomes effectively ran-

dom.”

. . . xXA X x e .
Consider N data points uniformly - 6——\i 1
distributed in a D-dimensional unit 0 h- 1
ball centered at the origin. We con- - ({_ N )
sider a nearest-neighbor estimate at ’ 2
the origin. The median distance
from_the origin to the closest data /
point 1s, N

L 1/N\ /P -—D‘: LA
Yo Mo 1o
For N = 500, D = 10, this number [0 K%)(o-o? (Q-Of@
is 0.52, more than halfway to the ~0F  ~06d
boundaty. (see HTF for det<ils)
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k-NNN vs linear revisited

. . . . )(> -
In high-dimension, both bias and F (
variance increase.

1-NN in One Dimension 1-NN in One vs. Two Dimensions
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FIGURE 2.7. A simulation example, demonstrat-
ing the curse of dimensionality and its effect on
MSE, bias and variance. The input features are uni-
formly distributed in [—1,1]" for p = 1,...,10 The
top left panel shows the target function (no mnoise)
in R: f(X) = e_SHXHQ, and demonstrates the er-
ror that 1-nearest neighbor makes in estimating f(0).
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Anether example for high variance.

1-NN in One Dimension MSE vs. Dimension
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FIGURE 2.8. A simulation example with the same
setup as in Figure 2.7. Here the function is constant
in all but one dimension: F(X) = (X1 +1)°. The
variance dominates.

Recall that the variance of linear re-
gression grows only linearly with di- _i‘l"e
mensionality (Page-5"in the “bias- '
variance” lecture). By imposing
some heavy restrictions on the class

of models, we can avoid the curse

of dimensionality or the curse of
highly-variable functions.

Expected Prediction Error of INN vs. OLS
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FIGURE 2.9. The curves show the expected predic-
tion error (at xo = 0) for 1-nearest neighbor relative
to least squares for the model Y = f(X) + €. For
the orange curve, f(x) = x1, while for the blue curve

F) = S+ 1)°. -

+h

[49_3 result



Discussion

(Taken from HTF). We will see (in
the next few lectures) that there
is a whole spectrum of models
between the rigid linear models and
the extremely flexible 1-NN model.
Each model comes with their own
assumptions and biases.

(Based on Domingos). You might
think that gathering more input
variables never hurts, since at the
worst they provide no new informa-
tion about the output. But in fact
their benefits may be outweighed by
the curse of dimensionality.



