Introduction to Gaussian Processes

Pattern Recognition & Machine Learning Course, EPFL



Motivation
I

Goals of this lecture

— Understand what a Gaussian Process (GP) is.

— Learn how GPs can be used for regression.

More specific to GPs, you will learn:

— What a covariance matrix means from a GP point of view.

— How a GP defines a prior over functions, and its relationship
to its covariance matrix and correlation terms.

— What “conditioning on the measurements” means, in a
probabilistic sense as well as mathematically.

Note: GPs for classification are outside the scope of this lecture. But if you understand regression GPs it won't be too difficult
to learn how classification GPs work. Please see Rasmusen and William's “Gaussian Processes for Machine Lear%
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Motivation: why Gaussian Processes?
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Say we want to estimate a scalar function f (CU)

from training data D = {xi, fi ;?\;17 with y; = f(z;) + €
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Motivation
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Say we want to estimate a scalar function f(z)

from training data D = {mi, fi f\;p with y; = f(z;) + €
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/ \ \
Gaussian Processes let us place a prior on the 'shape' of ()

And this prior is formulated probabilistically




Let's get started!
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Gaussian Processes
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Let's get back to finding f(Z), but now

—

- From a single observation {1, f1}

— We want to predict fx = fxy)

Intuition?
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Now, in a probabilistic manner...

The estimated f, is now a Random Variable, with a corresponding PDF.
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Getting there... (D LV
The estimated f,. is now a Gaussian RV:  f, ~ N (ps, 02)
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What about multiple training points?
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So far we expressed f,. as a function of the training data

But Gaussian Processes work in a slightly different way...
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We take fi and f, to be RVs, with a joint Gaussian pdf

e

p(]f_laé | 5131,513*)



Gaussian Processes

We take fi and f, to be RVs, with a joint Gaussian pdf

p(flaf* |$1,£IJ*)

More precisely, / Z
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Incorporating the measurement:
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Incorporating the measurement:

Our model is  p(f1, f« | T1,Tx) ?FIO(
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Incorporating the measurement:
But we know f(z1) = f1!

L ——

Our model is  p(f1, f« | 1, Tx)
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Incorporating the measurement:
But we know f(z1) = fi!

Our model is p(fl, fs | T, CIZ*)

And we want to estimate
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Incorporating the measurement:
But we know f(z1) = f1!

Our model is p(fl, fs | T, CIZ*)

And we want to estimate

What we want is p(f*m, T, ZB*)
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Incorporating the measurement:
But we know f(z1) = f1!

p(flaf* |$175’7*)

And we want to estimate

Our model is

What we want is p(f* ‘ f1, 1, :E*)
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Summarizing our 2-point Gaussian Process:

- OQur model or prior is
e ——

p(f1, fe | 21, 74) :N(O,K(xl,m*))

K = [Kmn] = [k(@m, z,)]

- If we have a measurement f(z1) = f1, we can condition on it to estimate f:

p(fel frown, ) = N (ju, 02)

We get a probability distribution as the output.




Exercise
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Let’s use the RBF kernel  k(x,,x.;,) = e~ (@n—zm)*/2

——

1(()(/1,)(»“ k(x’\,)(g\

- For our model prior \< -

p(fl,f*|:u1,a:*):N(O,K) Lk(x'l!)(k\ l< tXx,Xx)

K = [Kmn] = [k(ﬂcm,azn)}

ow many rows and columns K has? 2 X 2

)
2) Compute K for z; =1, z, = 2.
3) Are f; and f, strongly correlated?

’< R T/( NO)& (Hint: e~ 1/? ~ 0.6)

~0 A 4) What if z, = 107
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Time to get to the Real GP
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A gaussian process defines a prior over functions f,

p(£|X) = N(f| 0, K(X)) S

—
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Defining the kernel function k(x,,,X;,) defines the prior

1. We can sample functions from this prior

2. We can use the prior + measurements to generate predictions
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1) A prior over functions
Given k(xn, T, ), we can sample functions from p(f|X) = N(f| 0, K(X))
K (*4! b(-b\

Example 1: RBF kernel k(x,,X) = e~ |1%n—xm||*/ L

L =50
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1) A prior over functions
Given k(xn, ), we can sample functions from p(f|X) = N<f|0, K(X))
Example 1: RBF kernel k(x,,X) = e~ IPxn—xm|*/L7

L =10
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1) A prior over functions
Given k(xn, ), we can sample functions from p(f|X) = N<f|0, K(X))
Example 1: RBF kernel k(x,,X) = e~ IPxn—xm|*/L7

L =2

10

—10 1 1 |
—10 -5 0 3 10




Gaussian Processes
I

1) A prior over functions k(Xp, Xy ) = e Pn=xm|l*/L7

Example 1: RBF kernel, What will happen if L — 07
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1) A prior over functions k(Xp, Xy ) = € Pn=xm|I*/L7

Example 1: RBF kernel, What will happen if L — 07

What will happen to the correlation between different points?

 Leo k=1
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1) A prior over functions

Given k(xn, ), we can sample functions from p(f|X) = N<f|0, K(X))

Example 2: Quadratic kernel k(x,,%X,) = (1 +x.x,,)?
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2) Incorporating noise-free measurements

Notation: P ( : X\

e f, X : training data

o f.. X,: prediction /
V. 4

H ~ (o [?&’% K &i’%*))] )
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2) Incorporating noise-free measurements

Y

Notation:

o f X : training data /\

o f., X,: prediction ]

[f] ~N<0, [K(X,X) K(X,X*)])

f, K(X.,X) K(X., X.)

Conditioning on f (training data) we get

=

f, | £, X, X ~ N(u, X)
=KX, X)K(X,X)'f

with ,
Y=K(X. X, — KX, X)K(X,X) " K(X,X,)
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3) Incorporating noisy measurements (as in real life)

Assume measurements y are noisy such thali y = f(x)+e ]
and € is 1.i.d. with e ~ N(0,02)

Therefore, cov(y) = K(X,X) + 021 , and we can write

] RRAT k)
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3) Incorporating noisy measurements (as in real life)

Assume measurements y are noisy such that y = f(x) + ¢
and € is i.i.d. with e ~ N(0,02)

Therefore, cov(y) = K(X,X) + 021 , and we can write

7] (o [T KOG ]

Conditioning on y (training data) we get

f, |Y7X*7X ~ N(Nla E/)

W= K(X,,X) [K(X,X)+02I] 'y i
Y= K(Xa, X)) — KXo, X) [K(X,X) +021] K(X, X.)
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Demo Time
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A Re al Example [Rasmussen, Williams, Gaussian Processes for Machine Learning]
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A Re al Example [Rasmussen, Williams, Gaussian Processes for Machine Learning]
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A Re al Example [Rasmussen, Williams, Gaussian Processes for Machine Learning]

Kernel Design: k(x,2') = ki(x,2") + ka(z,2") + ks(z,2") + kya(z, 2")

—_—— e

Long-term smoothness

ka(z,a') = 62 exp <_M) LR F

03

—2 A@ v
Seasonal trend (periodicity)

_9ain2 R, N2
kQ(CU,CU/) — 9% exp [— 2sin (2‘2(:8 v ))] exp (-%%)
5 1

Short- and medium-term anomaly

— 0
N 2 G
kg(x,a:)96<1-|- 20502 )

Noise
ky(z,2') = 05 exp ( -
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What about Classification?
So far f(x) is a real function, not optimal for classification
what would you suggest doing? . ( }
Flv) ~ M(/‘M () | elys )= ¥
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Summary

e GPs place a prior over functions through p(f|X) =N (f 10, K(X ))

— K(X) defines ’shape’ and prior knowledge about our problem

e Prediction = Prior | Measurements

(Tightly linked to Bayesian Estimam'gﬁ)

e GPs can be applied to classification

(and many other applications, eg. Dimensionality Reduction, Latent Variable Models...)



