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Goals of this lecture

– Understand what a Gaussian Process (GP) is.

– Learn how GPs can be used for regression.

More specific to GPs, you will learn:

– What a covariance matrix means from a GP point of view.

– How a GP defines a prior over functions, and its relationship 
to its covariance matrix and correlation terms.

– What “conditioning on the measurements” means, in a 
probabilistic sense as well as mathematically.

Note: GPs for classification are outside the scope of this lecture. But if you understand regression GPs it won't be too difficult 
to learn how classification GPs work. Please see Rasmusen and William's “Gaussian Processes for Machine Learning” book.



Motivation: why Gaussian Processes?
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Say we want to estimate a scalar function

from training data
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Gaussian Processes let us place a prior on the 'shape' of

And this prior is formulated probabilistically



Let's get started!
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Let's get back to finding         , but now

– From a single observation 

– We want to predict 
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Now, in a probabilistic manner.
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Gaussian Processes
14

What about multiple training points?
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Time to get to the Real GP
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1) A prior over functions
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2) Incorporating  noise-free  measurements
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3) Incorporating  noisy  measurements (as in real life)



Gaussian Processes
37

3) Incorporating  noisy  measurements (as in real life)
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Demo Time
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A Real Example [Rasmussen, Williams, Gaussian Processes for Machine Learning]

?
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A Real Example [Rasmussen, Williams, Gaussian Processes for Machine Learning]

Kernel Design: 

11 parameters
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What about Classification?
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Summary


