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Motivation
K-means forces the clusters to be
spherical, but sometimes it is desir-
able to have elliptical clusters. An-
other issue is that, in K-means, each
example can only belong to one clus-
ter, but this may not always be a
good choice, e.g. for data points that
are near the “border”. Both of these
problems are solved by using Gaus-
sian Mixture Model.

Clustering with Gaussians

The first issue is resolved by using
full covariance matrices Σk instead
of isotropic covariances.

p(X|µ,Σ, r) =

N∏
n=1

K∏
k=1

[N (xn|µk,Σk)]
rnk

Soft-clustering

The second issue is resolved by
defining rn to be a random vari-
able. Specifically, define rn ∈
{1, 2, . . . , K} that follows a multi-
nomial distribution.

p(rn = k) = πk where πk > 0,∀k and

K∑
k=1

πk = 1
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This leads to soft-clustering as op-
posed to having “hard” assignments.

(c)

0 0.5 1

0

0.5

1

Gaussian mixture model
Together, the likelihood and the
prior define the joint distribution of
Gaussian mixture model (GMM):

p(X, rn|µ,Σ,π)

=

N∏
n=1

p(xn|rn,µ,Σ)p(rn|π)

=

N∏
n=1

K∏
k=1

[{N (xn|µk,Σk)}rnk]
K∏
k=1

[πk]
rnk

Here, xn are observed data vec-
tors, rn are latent unobserved
variables, and the unknown pa-
rameters are given by θ :=
{µ1, . . . , µK,Σ1, . . . ,ΣK,π}.
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Marginal likelihood

GMM is a latent variable model
with rn being the unobserved
(latent) variables. An advantage
of treating rn as latent variables
instead of parameters is that we
can marginalize them out to get a
cost function that does not depend
on rn, i.e. as if rn never existed.

Specifically, we get the following
marginal likelihood by marginalizing
rn out from the likelihood:

p(xn|θ) =

K∑
k=1

πkN (xn|µk,Σk)
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Deriving cost functions this way,
is good for statistical efficiency.
Without a latent variable model, the
number of parameters grow at rate
O(N). After marginalization, the
growth is reduced to O(D2K) (as-
suming D,K << N).
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Maximum likelihood
To get a maximum (marginal) like-
lihood estimate of θ, we maximize
the following:

max
θ

N∑
n=1

log

K∑
k=1

πkN (xn|µk,Σk)

Is this cost convex? Identifiable?
Bounded?

x

p(x)

To do

1. Understand K-means extension to GMM. Why do we need to treat

rn as a random variable? Identify the joint, likelihood, prior, and

marginal distributions, respectively.

2. Understand identifiability and the difficulty with the maximum-

likelihood estimation.
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