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6. Gaussian Processes

6.1 Goals
The goal of this exercise is to

• Understand Gaussian Process priors and their relation with the kernel function.
• Apply Gaussian Process regression to a toy example. Fit the model by maximizing

the marginal probability p(y|X).

6.2 Gaussian Process Math Review
Before starting, a quick review of GPs.

The Gaussian Process prior is a multi-variate Normal distribution, or

f |X ∼ N
(
µ(X), K(X,X)

)
, (6.1)

where K(X,X) = [k(xn,xm)], also called a kernel matrix. Typically, µ = 0, though not
strictly necessary.

If measurements of the form y = f(X) + ε are available, with ε ∼ N
(
0, σ2nI

)
, then[

y
f∗

]
∼ N

(
µ

([
X
X∗

])
,

[
K(X,X) + σ2nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])

Conditioning on y (training data), we get

f∗ | y, X∗, X ∼ N (µ′, Σ′)

with

µ′ = µ(X∗) + K(X∗, X)
[
K(X,X) + σ2nI

]−1 (
y − µ(X)

)
(6.2)

Σ′ = K(X∗, X∗) − K(X∗, X)
[
K(X,X) + σ2nI

]−1
K(X,X∗) (6.3)

Note: unlike the lecture, here, without loss of generality, we allow for the mean of the
prior to be a function of X as well.

6.2.1 Marginal Likelihood
Generally the kernel function depends on hyper-parameters θ. For example, in the RBF
kernel one hyper-parameter is the length-scale L that defines how smooth our prior is.
Setting such parameters is generally not easy. One can use cross-validation. But, as
discussed in the class, we can also estimate them by maximizing the marginal log-likelihood
p(y|X, θ) shown below.

log p(y|X, θ) = − 1

2
(y − µ(X))T

(
K + σ2nI

)−1
(y − µ(X))

−1

2
log |K + σ2nI| −

n

2
log 2π , (6.4)



2 6. Gaussian Processes

where n is the number of elements of y, and log |W | is the notation for the logarithm
of the determinant of W . Depending on the problem, the noise variance σ2n may also
be an unknown, and therefore considered a hyper-parameter, and part of θ.
(If you are interested in the derivation of the equation above, check the book by Rasmussen
and Williams on Gaussian Processes)

6.3 Visualizing Gaussian Process Priors

Exercise 6.1 Fill in the necessary code in ex6_priorplot.m to show draws of f
from the prior above. Experiment with different kernels, and think about the following
questions:

• Constant kernel: k(xn,xm) = k2o . What is the correlation Kmn for this kernel?
How much information can one point reveal about another one? What does k2o
express? What if µ is constant but not zero?

• Linear kernel: k(xn,xm) = k2o + k21 x
T
n xm

• RBF kernel: k(xn,xm) = k2o + k21 exp
(
−|xn − xm|2/L2

)
. Play with the values

of L and observe its effect on the smoothness of the prior.

To help organize your code, write three functions, one for each kernel type, that
compute the kernel matrix given input matrices X1 and X2, returning K(X1, X2):

• K = constantKernel(X1, X2, ko)
• K = linearKernel(X1, X2, ko, k1)
• K = RBFKernel(X1, X2, ko, k1, L)

Remember that X1 and X2 are feature matrices, so that they must have equal number
of columns, but may have different number of rows (samples). The size of K(X1, X2)
is the number of rows of X1 by the number of rows of X2.

Note: in this exercise X will have only one column, but you should make your code
generic to any number of columns.

ko, k1 and L are real-valued, positive hyper-parameters. You can start with ko = k1 =
L = 1. �

Exercise 6.2 Bonus: the mean of the prior µ can also be a function of X, which allows
for introducing more prior knowledge about the problem being solved. Experiment
with different values of µ(X), such as a linear model, sinusoids, etc. �

6.4 Fitting a Constant

Let’s now turn to making predictions, given a prior and measurements. Let’s take a
constant kernel k(xn,xm) = k2o . In our prior we want to encode that we know that f is
somewhere around µ = 2, but we know this with high uncertainty, so k2o = 1.

Now you are given 4 noisy measurements yi = f(xi) + ε (note that x is irrelevant in this
case), with ε ∼ N (0, σ2n):

• y1 = 2.5
• y2 = 2.3
• y3 = 2.4
• y4 = 2.2
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The measurements are i.i.d. and the measurement noise variance is σ2n = 0.1.

Exercise 6.3 Given the prior and measurements above,
• Estimate p(f |y1, y2, y3, y4), incorporating both the prior and measurements,
writing down the Gaussian Process prediction Eq. 6.2 and 6.3 in Matlab.

• Suppose that we were very uncertain about our prior belief, so that k2o is very
large, for example k2o = 1000 . What predicted mean and variance do you get?
Compare it to the above results.

• Now assume that you are equally uncertain as about your prior belief as your
measurement, i.e. we set k2o = σ2n. What predicted mean and variance do you
get? Draw your conclusions.

�

Note: there is no template code for this part, you have to write the code from scratch
yourself.

6.5 Fitting a Gaussian Process to Data: Learning the Hyper-parameters
Now you will tackle a problem close to a real-world scenario.

You are given a set of data points to train a regressor, and you are asked to make predic-
tions with a Gaussian Process with a RBF kernel. You know that the measurements are
noisy, but you don’t know exactly which σ2n to use, nor the length scale L for the kernel,
nor k21. That is, you do not know your hyperparameters.

To make things simple for you, we will fix k2o = 0 and also the GP prior to have zero
mean.

Exercise 6.4 With the information above, find the hyper-parameters θ = {σ2n, k21, L} of
a Gaussian Process thatmaximize the marginal p(y|X, θ). Use the file ex6_rbf_marginal.m
as your template and fill in the necessary code.

Typically, θ is found through gradient ascent, because Eq. 6.4 is differentiable with
respect to θ. However, to make it faster to implement, you can use grid search.

You should re-use the function to compute the RBF kernel matrix you wrote for the
first exercise above.

Bonus: Find the optimal θ through gradient descent or gradient ascent. Note that
you have to differentiate K with respect to θ. �

You should get a result similar to that of Figure 6.1.

6.6 Bonus: CO2 Concentration Prediction
You will reproduce the CO2 concentration example from the Rasmussen & Williams book.
You need to implement the GP prediction equations, using the four kernels discussed in
their book. For this exercise you don’t need to do hyperparameter search, you can just
use the values reported by Rasmussen & Williams in Chapter 5.4.3 of their book. Use
the file ex6_co2 as your template. You should get something similar to Figure 6.2.
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Figure 6.1: GP prediction for the two simulated datasets of Exercise 6.4.

Figure 6.2: CO2 Concentration Data: Training data (blue), unseen data (red), and
estimated 95% confidence interval.
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