
Pattern Classification And Machine Learning - EPFL - Fall 2015
Emtiyaz Khan, Farnood Salehi & Dennis Meier

8. Recommendation Systems

8.1 Goals
The goal of this exercise is to:

• Build a recommendation system.
• Learn to evaluate its performance.
• Implement alternating least-squares (ALS) algorithm.
• Choose appropriate number of factors, as well as regularization parameters.
• Compare the performance of ALS to a few baselines.

8.2 The Data
We will use the Movielens-100k data set. It is available on the course website (the file
movielens100k.mat). The matrix ratings contains ratings of 1682 movies, rated by 943
users. Each user has only rated a few movies, therefore many ratings are missing. Our
goal is to build a recommendation system that predicts the missing ratings. More details
about the data-set can be found at http://grouplens.org/datasets/movielens/.

The data also contains meta-data about the movies. Even though we will not use this
information in this lab, you can look into it for fun. The variable movieInformation
contains the ID of the movie, its title, release date, and a link to the corresponding
IMDB page. The vector genreNames contains the name of 19 genres, and the matrix
movieMetaData contains the genre for all the movies. Note that some movies belong to
multiple genres. Finally, the matrix timeStamp contains the actual time when the rating
was provided.

8.2.1 Visualization and Creating Train-Test Splits
Since our goal is to predict the unseen ratings, we can create a test set by “punching
holes" in the matrix, i.e. we randomly select some of the ratings in the matrix as test
points, while we leave the rest for training.

We have provided the code to for this; see rec_sys.m where we randomly choose a
maximum of 5 test entries per user. We only consider users and movies that have more
than 10 ratings. This way, we keep some minimum training data for users and movies
that have very few ratings. The matrix X contains the training data while the matrix
Xtest contains the test data. Note that we use sparse matrices to save memory, i.e. we
store the indices and values of non-zero entries only. You can read more about sparse
matrices in Matlab’s documentation.

When you run rec_sys.m, you will see two plots. The first plot is shown in Figure 8.1
and shows the number of ratings for each user and each movie. We can see that the
number of ratings varies quite a lot among users and movies. This is very typical of
datasets for recommendation systems, and Big Data in general. The second plot is shown
in Figure 8.2 which shows a train-test split created using rec_sys.m.

Note that you can generate many such train-test splits by changing the random seed.

http://grouplens.org/datasets/movielens/


2 8. Recommendation Systems

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

nu
m

be
r 

of
 r

at
in

gs
 (

so
rt

ed
)

users
0 500 1000 1500 2000

0

100

200

300

400

500

600

nu
m

be
r 

of
 r

at
in

gs
 (

so
rt

ed
)

movies

Figure 8.1: The left figure shows the number of ratings for each user, while the right figure
shows the number of ratings for each movie. Both numbers are shows in a descending
order for clarity.

8.2.2 Performance Evaluation
We will use the root mean-square error (RMSE) to measure the performance. Given test
ratings xdn for d’th movie and n’th user and its estimate x̂dn, we compute RMSE as
follows:

RMSE :=

√√√√ 1

Nt

N∑
n=1

∑
d∈On

(xdn − x̂dn)2 (8.1)

where Nt is total number of test pairs and On is the set of test movies for the n’th user.

8.2.3 Baseline Models
We will use the following models, that use the mean to predict, as baselines:

Global Mean: x̂ =
1

Ntr

N∑
n1=1

∑
d1∈On1

xd1n1 , (8.2)

User Mean: x̂n =
1

Nn

∑
d1∈On

xd1n, (8.3)

Movie Mean: x̂d =
1

Nd

∑
n1∈Od

xdn1 , (8.4)

where Ntr is the total number of non-zero entries in the training data matrix, Nn is the
total number of ratings for n’th user, Nd is the total number of ratings for d’th movie,



8.3 Alternating Least Squares 3

0 200 400 600 800

0

200

400

600

800

1000

1200

1400

1600

Users

Training data

M
ov

ie
s

0 200 400 600 800

0

200

400

600

800

1000

1200

1400

1600

Users

Test data

M
ov

ie
s

Figure 8.2: This figure shows a train-test split obtained using rec_sys.m. The left figure
shows the training data and the right figure shows the test data. In each figure, a blue
dot indicates a user-movie pairs which is non-zero.

On is the set of movies rated by n’th user, and Od is the set of users who have rated d’th
movie.

Exercise 8.1 We will compare the above three baselines first.
• Before implementing, think about the following: which of the three models will

give the best performance, and why?
• We have implemented the Global Mean model in rec_sys.m. Implement the

other two baselines.
• Now, compare the models. Which model gives you the lowest RMSE? Which is
the best model overall? Hint: You can change the random seed and generate
several estimates of RMSE to compute a confidence score.

�

8.3 Alternating Least Squares

Exercise 8.2 We will now implement the ALS algorithm.
• Fill in the code for ALS in rec_sys.m. You only have to write the updates of Z

given W and vice-versa. We have provided you the code to compute RMSE.
• How does the test error vary with M , λz and λw?
• Select appropriate values of M , λz and λw. You can use cross-validation, but

that might be too expensive (why?). Think of ways to reduce computation.
• How much improvement do you get using ALS?

�


	Recommendation Systems
	Goals
	The Data
	Visualization and Creating Train-Test Splits
	Performance Evaluation
	Baseline Models

	Alternating Least Squares


