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Motivation
Computing maximum likelihood for
Gaussian mixture model is difficult
due to the log outside the sum.

max
θ
L(θ) :=

N∑
n=1

log

K∑
k=1

πkN (xn|µk,Σk)

Expectation-Maximization (EM) al-
gorithm provides an elegant and
general method to optimize such op-
timization problems. It uses an iter-
ative two-step procedure where in-
dividual steps usually involve prob-
lems that are easy to optimize.

EM algorithm: Summary

Start with θ(1) and iterate:

1. (Expectation step) Compute a
lower bound to the cost such that
it is tight at the previous θ(i):

L(θ) ≥ L(θ,θ(i)) and

L(θ(i)) = L(θ(i),θ(i)).

2. (Maximization step) Update θ:

θ(i+1) = arg max
θ
L(θ,θ(i)).
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Concavity of log

Given a vector p = [p1, p2, . . . , pK]T

s.t. 0 < pk < 1, ∀k,
∑

k pk = 1, the
following holds for any tk > 0:

log

(
K∑
k=1

pktk

)
≥

K∑
k=1

pk log tk

The expectation step

log

K∑
k=1

πkN (xn|µk,Σk) ≥
K∑
k=1

pkn log
πkN (xn|µk,Σk)

pkn

with equality when,

pkn =
πkN (xn|µk,Σk)∑K
k=1 πkN (xn|µk,Σk)

This is not a coincidence.
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The maximization step

Maximize the lower bound w.r.t. θ.

max
θ

N∑
n=1

K∑
k=1

p
(i)
kn [log πk + logN (xn|µk,Σk)]

Differentiating w.r.t. µk,Σ
−1
k , we

can get the updates for µk and Σk.

µ
(i+1)
k =

∑N
n=1 p

(i)
knxn

p
(i)
kn

Σ
(i+1)
k =

∑N
n=1 p

(i)
kn(xn − µ

(i+1)
k )(xn − µ

(i+1)
k )T

p
(i)
kn

For πk, we use the fact that they
sum to 1. Therefore, we add a
Lagrangian term, differentiate w.r.t.
πk and set to 0, to get the following
update:

π
(i+1)
k =

1

N

N∑
n=1

p
(i)
kn
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Summary of EM for GMM

Intialize µ(1),Σ(1),π(1) and iterate between the E and M
step, until L(θ) stabilizes.

1. E-step: Compute responsibilities p
(i)
kn:

p
(i)
nk =

π
(i)
k N (xn|µ(i)

k ,Σ
(i)
k )∑K

k=1 πkN (xn|µ(i)
k ,Σ

(i)
k )

2. Compute the marginal likelihood (cost).

L(θ(i)) =

N∑
n=1

log

K∑
k=1

π
(i)
k N (xn|µ(i)

k ,Σ
(i)
k )

3. M-step: Update µ
(i+1)
k ,Σ

(i+1)
k , π

(i+1)
k .

µ
(i+1)
k =

∑N
n=1 p

(i)
knxn

p
(i)
kn

Σ
(i+1)
k =

∑N
n=1 p

(i)
kn(xn − µ

(i+1)
k )(xn − µ

(i+1)
k )T

p
(i)
kn

π
(i+1)
k =

1

N

N∑
n=1

p
(i)
kn

If we let, covariance be diagonal i.e. Σk := σ2I, then EM
algorithm is same as K-means as σ2 → 0.

4



(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(c)

L = 1

−2 0 2

−2

0

2

(d)

L = 2

−2 0 2

−2

0

2

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2

Figure 1: EM algorithm for GMM

Posterior distribution

We now show that p
(i)
kn is the pos-

terior distribution of the latent vari-
able, i.e. p

(i)
kn = p(rn|xn,θ(i))

p(xn, rn|θ) = p(xn|rn,θ)p(rn|θ) = p(rn|xn,θ)p(xn|θ)
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EM in general

Given a generic joint distribution
p(xn, rn|θ), marginal likelihood can
be lower bounded in a similar way.

EM algorithm can be compactly
written as follows:

θ(i+1) = arg max
θ

N∑
n=1

E
p(rn|xn,θ(i)) [log p(xn, rn|θ)]

Another interpreation is that part of
the data is missing, i.e. (xn, rn) is
the “complete” data and rn is miss-
ing. EM algorithm averages over the
“unobserved” part of the data.

To do

1. Identify the joint, likelihood, prior, and marginal distributions

respectively. Understand the use of Bayes rule that relates all

these distributions together.

2. Derive the posterior distribution for GMM.

3. Understand the relation between EM and K-means.

4. Relate the lower bound to EM for probabilistic models in general.

5. Read the Wikipedia page on how to find a good K.

6. Read Bishop Section 14.5 to learn about conditional mixture mod-

els and mixture of experts.

7. Read about other mixture models in KPM book.
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