Cross-Validation

Mohammad Emtiyaz Khan EPFL

Oct 6, 2015

 \bigodot Mohammad Emtiyaz Khan 2015

Motivation

In ridge regression, the parameter $\lambda > 0$ can be tuned to reduce overfitting by reducing model complexity.

$$\min_{\beta} \quad \frac{1}{2N} \sum_{n=1}^{N} [y_n - \widetilde{\boldsymbol{\phi}}(\mathbf{x}_n)^T \boldsymbol{\beta}]^2 \quad + \quad \frac{\lambda}{2N} \sum_{j=1}^{M} \beta_j^2$$

But how do we choose λ ?

The generalization error

The generalization error of a learning method is the expected prediction error for *unseen* data, i.e. mistakes made on the data that we are going to see in the future. This quantifies how well the method *generalizes*.

Simulating the future

Ideally, we should choose λ to minimize the mistakes that will be made in the future. Obviously, we do not have the future data, but we can always *simulate the future* using the data in hand.

Splitting the data

For this purpose, we split the data into train and validation sets, e.g. 80% as training data and 20% as validation data. We pretend that the validation set is the future data. We fit our model on the training set and compute a prediction-error on the validation set. This gives us an *estimate* of the generalization error (one instant of the future).

We plot estimates of the generalization error for many values of λ (grid search). We can then repeat this process for many random splits to \Im obtain confidence in our estimate.

Validation

Validatin error

or sim

foct, ex

use average RMSB.

Training

Train error

To chuose

Figure 1: The left figure shows ridge regression results for a 50-50 split. The right one shows a comparison with and without feature transformations. The improvement is very little and might be insignificant.

Cross-validation

Random splits are not the most efficient way to compute the error.

K-fold cross-validation allows us to do this efficiently. We randomly partition the data into K groups. We train on K - 1 groups and test on the remaining group. We repeat this until we have tested on all K sets. We then average the results.

Cross-validation returns an unbiased estimate of the *generalization error* and its variance.

Question!

RMSE

Additional Notes

Pseudo code for CV

```
1 % given K splits (yk, Xk)
2
 for i = 1:length(vals)
3
      lambda = vals(i);
      for k = 1:K
4
           % Compute beta for subgroups other than k
5
           beta = \dots
\mathbf{6}
           % train & test error on k'th subgroup
7
           errTrSub(k) = computeCost(yk, Xk, beta);
8
           errTeSub(k) = computeCost(yk, Xk, beta);
9
      end
10
      % compute average of train and test errors
11
      errTr(i) = mean(errTrSub(k));
12
      errTe(i) = mean(errTeSub(k));
13
14 end
15
  [errStar, lambdaStar] = min(errTe);
```

To do

- Implement CV and gain experience to set λ and K.
- Details on unbiasedness of cross-validation is in Section 7.10 in the book by Hastie, Tibshirani, and Friedman (HTF).
- Read about bootstrap in Section 7.11 in HTF book. This method is related to random splitting and is a very popular method.