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Motivation
In ridge regression, we observe a
typical behaviour for train and
test errors with respect to model
complexity. Bias-variance decompo-
sition explains this behaviour.

IMPORTANT: Throughout this lec-
ture, we assume that we have a
training dataset of size N .

Training errors

Given a training dataset Dtr of size
N , we define train error as follows:

trErr(Dtr) :=
1

N

N∑
n=1

(yn − f (xn))2

where f is the learned regression
function from Dtr. This is the train
error we can compute in practice.

We can define the expected train er-
ror by taking expectation over all
possible training datasets of size N .

trErr := EDtr
[trErr(Dtr)]

Since we have finite data, we do not
know this error.
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Test errors
Given a test-pair Dte = {y∗,x∗}, we
can define the in-sample test error,

teErr∗(Dte,Dtr) := [y∗ − f (x∗)]
2

We can compute this error for
samples in the validation set.

The test error is obtained by taking
expectation over the test-data.

teErr(Dtr) := EDte
[{y∗ − flse(x∗)}2]

We do not know this quantity in
practice and our goal is to estimate
it as accurately as possible.

Note that the test error depends on
theDtr. We can further average over
all possible training data of sizeN to
get the expected test error.

teErr := EDtr
EDte

[{y∗ − flse(x∗)}2]

This error tells us the optimal error
obtained with a dataset of size N .
Obviously, this is not known either.
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Error vs Model Complexity

This figure is taken from the book
by Hastie, Tibshirani, and Friedman
(HTF) Chapter 7. A total of 100
training sets Dtr with N = 50 were
used. Light blue curves show the
train error and the thick blue curve
shows the expected train error.
Light red curves show the test error
and the thick red curve shows the
expected test error.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.1. Behavior of test sample and training
sample error as the model complexity is varied. The
light blue curves show the training error err, while the
light red curves show the conditional test error ErrT
for 100 training sets of size 50 each, as the model com-
plexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].
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Bias-variance decomposition

We will show four key results using
Bias-variance decomposition.

Let us assume ftrue(xn) is the true
model and the observations are
given as follows:

yn = ftrue(xn) + εn

where the εn are i.i.d. with zero
mean and variance σ2.

Note that ftrue can be nonlinear
and εn doesn’t have to be Gaussian.

We denote the least-square estima-
tor by flse(x∗) = x̃T∗βlse. For this
derivation, we will assume that x∗ is
fixed, although it is straightforward
to generalize this.
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Both bias and variance con-
tribute to expected test error

The expected test error for the least-
squares estimate can be written as
follows,

teErr := EDtr,Dte
[(y∗ − flse)2]

= Ey∗,βlse[(y∗ − flse)
2]

= σ2 + Eβlse(flse − ftrue)
2

= σ2 + Eβlse{[flse − Eβlse(flse)]
2}

+ [ftrue − E(flse)]
2

Both model bias and estima-
tion bias are important

Ridge regression increases es-
timation bias while reducing
variance

Increasing model complexity
increases test error

For the least-squares estimate, you
can show that

teErr := σ2 +
D

N
σ2 + Eβlse[ftrue − E(flse)]

2

With increasing D, the variance of
the estimator increases. See HTF
Page 224.
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Additional Notes

A figure to illustrate bias-variance tradeoff

This is taken from HTF Chapter 7.
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.2. Schematic of the behavior of bias and
variance. The model space is the set of all possible
predictions from the model, with the “closest fit” la-
beled with a black dot. The model bias from the truth is
shown, along with the variance, indicated by the large
yellow circle centered at the black dot labeled “closest
fit in population.” A shrunken or regularized fit is also
shown, having additional estimation bias, but smaller
prediction error due to its decreased variance.
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Cross validation and generalization error

Cross validation estimates the expected train and test error. If the learn-

ing curve is steep, then cross validation overestimates the true objective

function. Please read HTF Section 7.10.

Testing regression methods

You can learn about the following from HTF Page 47-49 and Chapter 3

of JWHT (see course infromation for book details).

• R2 and RMSE goodness of fit.

• Significance and hypothesis testing.

• Confidence interval, standard error, p-value, t-statistics etc.

• Feature engineering: transformations of input variables, adding

interactions, dummy encoding of binary and categorical variables,

missing values.

To do

• Clearly understand the definition of expected test and train errors

(do the exercise).

• Read HTF Section 7.2 and 7.3. This may not be an easy read.

• Revise the derivation of bias-variance decomposition.

• Visualize bias-variance decomposition during labs.

• For testing regression methods, read Page 47-49 from HTF and

Chapter 3 of JWHT (see course infromation for book details).
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