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Motivation
When the data is structured, e.g.
time-series data, prediction can
be improved by incorporate the
structure into the model. This can
be accomplished by using ideas from
both probability theory and graph
theory. The resulting field is called
probabilistic graphical model.

We will lean about Bayesian net-
work where the distribution respects
a directed graphical structure. Our
main goal is to learn inference of the
latent variables using belief propaga-
tion.

Bayesian network

Given a directed graph G and pa-
rameters θ, a Bayesian network de-
fines the joint distribution as follows,

pθ(x) =

K∏
k=1

pθ(xk|pak),

where pak are the parents of xk.
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A simple example

Moby is the pet fish and Fluffy is
the pet cat. One day, you observed
that Moby is missing. At the same
time, you notice that Fluffy’s food
bowl is full. You wonder what
happened.

There are three possibilities: (1)
Moby commited suicide (2) Fluffy
ate Moby (3) Fluffy is sick.

Given ya = 1, yb = 0, and θ, we wish to find:

1. Probability that “Moby committed suicide” i.e. p(z1|ya, yb).

2. Probability that “Fluffy ate Moby” i.e. p(z2|ya, yb).

3. Probability that “Fluffy is sick” i.e. p(z3|ya, yb).

There are the marginal posterior probability.
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Posterior computation

Define y := {ya, yb}. Using Bayes’
rule, we can write the following:

p(y, z1, z2, z3) = p(y|z1, z2, z3)p(z1, z2, z3) = p(z1, z2, z3|y)p(y)

To compute p(z1|ya, yb, yc), we can
marginalize z2 and z3.

p(z1|y) =
∑

z3={0,1}

∑
z2={0,1}

p(z1, z2, z3|y)

=
∑

z3={0,1}

∑
z2={0,1}

p(y|z1, z2, z3)p(z1, z2, z3)

p(y)

∝
∑

z3={0,1}

∑
z2={0,1}

p(y|z1, z2, z3)p(z1, z2, z3)

Expanding we get the following:

p(z1|y) ∝
∑
z3

∑
z2

p(ya|z1, z2)p(yb|z2, z3)p(z1)p(z2)p(z3)
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Flow chart of computation p(z1 = 1|ya = 1, yb = 0)

What is the computational complexity for D unknowns?
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Sum-product algorithm

We can reduce the complexity dras-
tically by using the structure of the
problem. We will use the sum-
product algorithm.∑
z3

∑
z2

p(ya|z1, z2)p(yb|z2, z3)p(z1)p(z2)p(z3)

= p(z1)
{∑

z2

p(ya|z1, z2)p(z2)
[∑

z3

p(yb|z2, z3)p(z3)
]}

Flow chart of computation for p(z1 = 1|ya = 1, yb = 0)

We can repeat the same procedure for z2 and z3.

p(z1|y) ∝ p(z1)
{∑

z2

p(ya|z1, z2)p(z2)
[∑

z3

p(yb|z2, z3)p(z3)
]}

p(z2|y) ∝ p(z2)
{∑

z1

p(ya|z1, z2)p(z1)
[∑

z3

p(yb|z2, z3)p(z3)
]}

p(z3|y) ∝ p(z3)
{∑

z2

p(yb|z2, z3)p(z2)
[∑

z1

p(yb|z1, z2)p(z1)
]}
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Notice that there are many redundant computations. We
can reduce computation by reusing the redundant ones.

p(z1|y) ∝p(z1)
∑
z2

p(ya|z1, z2) p(z2)
∑
z3

p(yb|z2, z3) p(z3)︸︷︷︸
m3→b(z3)︸ ︷︷ ︸

mb→2(z2)︸ ︷︷ ︸
m2→a(z2)︸ ︷︷ ︸

ma→1(z1)

Messages

Suppose, we have many latent
variables zi and many observations
ya. Also, assume that the graph
between the observations and the
variables is bi-partite. In this graph,
neighbours of observations are vari-
ables, and vice-versa. Define N(i)
to be the set of all neighbourhood
of zi and N(a) to be the set of all
neighbours of observation ya. Also,
define the set N(i)\a to be the set
of “all neighbours of i except a”.

Define the messages from variables
to observations as shown below:

mi→a(zi) = p(zi)
∏

b∈N(i)\a

mb→i(zi).
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Therefore, in our example, messages
from variables to observations are,

m1→a(z1) = p(z1),

m2→a(z2) = p(z2)mb→2(z2),

m2→b(z2) = p(z2)ma→2(z2),

m3→b(z3) = p(z3).

Similarly, the messages from obser-
vations to variables are shown below:

ma→i(zi) =
∑
j

p(ya|Paa)
∏

j∈N(a)\i

mj→a(zj).

In our example, these can be written
as shown below:

ma→1(z1) =
∑
z2

p(ya|z1, z2)m2→a(z2),

ma→2(z2) =
∑
z1

p(ya|z1, z2)m1→a(z1),

mb→2(z2) =
∑
z3

p(yb|z2, z3)m3→b(z3),

mb→3(z3) =
∑
z2

p(yb|z2, z3)m2→b(z2).

The first set of messages perform a
product operation, while the second
set performs the sum.
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Calculation of these messages for our
example are visualized in this figure.
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Belief Propagation

Here is a Belief propagation algo-
rithm for our example.

1. Initialize messages of variables
i to p(zi) and iterate until mes-
sages do not change:

(a) Send messages from vari-
ables to observations.

(b) Send messages from ob-
servations to variables.

2. Compute marginals by multi-
plying all the message received
at node i.

p(zi|y) = p(zj)
∏

j∈N(a)

mj→a(zj)
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Why will this work? See the path 1← a← 2← b← 3.

p(z1|y) ∝p(z1)
∑
z2

p(ya|z1, z2) p(z2)
∑
z3

p(yb|z2, z3) p(z3)︸︷︷︸
m3→b(z3)︸ ︷︷ ︸

mb→2(z2)︸ ︷︷ ︸
m2→a(z2)︸ ︷︷ ︸

ma→1(z1)
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See the path 1→ a→ 2← b← 3.

p(z2|y) ∝p(z2)
∑
z1

p(ya|z1, z2) p(z1)︸︷︷︸
m1→a(z1)︸ ︷︷ ︸

ma→2(z2)

∑
z3

p(yb|z2, z3) p(z3)︸︷︷︸
m3→b(z3)︸ ︷︷ ︸

mb→2(z2)
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Exercise: Work out the example to compute p(z3).

Discussion
Probabilistic graphical models also
contain other models such undi-
rected graphical models and factor
graphs. Belief propagation can be
applied to these models as well. The
main advantage of this method is
that it can be implemented using
distributed computation and is very
efficient for large scale models.
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