A Review of Linear Algebra

Mohammad Emtiyaz Khan
CS,UBC

Basics

- Column vector $\mathbf{x} \in R^{n}$, Row vector \mathbf{x}^{T}, Matrix $A \in R^{m \times n}$.
- Matrix Multiplication, $(m \times n)(n \times k) \Rightarrow m \times k, A B \neq B A$.
- Transpose $A^{T},(A B)^{T}=B^{T} A^{T}$, Symmetric $A=A^{T}$
- Inverse A^{-1}, doesn't exist always, $(A B)^{-1}=B^{-1} A^{-1}$.
- $\mathrm{x}^{T} \mathrm{x}$ is a scalar, xx^{T} is a matrix.
- $A \mathrm{x}=\mathrm{b}$, three ways of expressing:
- $\sum_{j=1}^{n} a_{i j} x_{j}=b_{j}, \forall j$
- $\mathbf{r}_{j}^{T} \mathbf{x}=b_{j}, \forall j$, where \mathbf{r}_{j} is $j^{\text {th }}$ row.
- $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{\mathbf{n}}=\mathbf{b}$ (Linear Combination, I.c.)
- System of equations: Non-singular (unique solution), singular (no solution, infinite solution).

LU factorization

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right] \Rightarrow A \mathbf{x}=\mathbf{b}} \\
& \underbrace{\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -8 & -2 \\
0 & 0 & 1
\end{array}\right]}_{U}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
5 \\
-12 \\
2
\end{array}\right] \Rightarrow U \mathbf{x}=E F G \mathbf{b} \\
& \underbrace{\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right]}_{E} \underbrace{\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right]}_{F} \underbrace{\left[\begin{array}{cc}
1 & \\
-2 & 1 \\
1 & 1
\end{array}\right]}_{G}, L=G^{-1} F^{-1} E^{-1}
\end{aligned}
$$

LU factorization

- (First non-singular case) If no row exchanges are required, then $A=L U$ (unique).
- Solve $L \mathbf{c}=\mathbf{b}$, then $U \mathbf{x}=\mathbf{c}$
- Another form $A=L D U$.
- (Second non-singular case) There exist a permutation matrix P that reorders the rows, so that $P A=L U$.
- (Singular Case) No such P exist.
- (Cholesky Decomposition) If A is symmetric, and $A=L U$ can be found without any row exchanges, then $A=L L^{T}$ (also called square root of a matrix). (proof).
- Positive Definite matrix always have a Cholesky decompostion.

Vector Space, Subspace and Matrix

- (Real Vector Space) A set of "vectors" with rules for vector addition and multiplication by real numbers. E.g. $R^{1}, R^{2}, \ldots, R^{\infty}$, Hilbert Space.
- (8 conditions) Includes an identity vector and zero vector, closed under addition and multiplication etc. etc.
- (Subspace) Subset of a vector space, closed under addition and multiplication (should contain zero).
- Subspace "spanned" by a matrix (Outline the concept)
$x_{1}\left[\begin{array}{l}1 \\ 5 \\ 2\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 4 \\ 4\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$

Linear Independence, Basis, Dimension

- (Linear Independence, l.i.) If $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}$ only happens when $x_{1}=x_{2}=\ldots=0,\left\{\mathbf{a}_{k}\right\}$ are called linearly independent.
- A set of n vectors in R^{m} are not l.i. if $n>m$ (proof).
- (Span) If every vector v in V can be expressed as a l.c. of $\left\{\mathbf{a}_{k}\right\}$, then $\left\{\mathbf{a}_{k}\right\}$ are said to span V.
- (Basis) $\left\{\mathbf{a}_{k}\right\}$ are called basis of V if they are I.i. and span V (Too many and unique)
- (Dimension) Number of vectors in any basis is called dimension (and is same for all basis).

Four Fundamental Spaces

Fundamental Theorem of Linear Algebra I

1. $\mathcal{R}(A)=$ Column Space of A; l.c. of columns; $\operatorname{dim} r$.
2. $\mathcal{N}(A)=$ Nullspace of $A ;$ All $x: A \mathbf{x}=0 ; \operatorname{dim} n-r$.
3. $\mathcal{R}\left(A^{T}\right)=$ Row space of A; l.c. of rows; $\operatorname{dim} r$.
4. $\mathcal{N}\left(A^{T}\right)=$ Left nullspace of A; All $y: A^{T} \mathbf{y}=0$; $\operatorname{dim} m-r$.
(Rank) r is called rank of the matrix. Inverse exist iff rank is as large as possible. Question: Rank of uv ${ }^{T}$

Orthogonality

- (Norm) $\|\mathbf{x}\|^{2}=\mathbf{x}^{T} \mathbf{x}=x_{1}^{2}+\ldots+x_{n}^{2}$
- (Inner Product) $\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+\ldots+x_{n} y_{n}$
- (Orthogonal) $\mathbf{x}^{T} \mathbf{y}=0$
- Orthogonal \Rightarrow I.i. (proof).
- (Orthonormal basis) Orthogonal vectors with norm =1
- (Orthogonal Subspaces) $V \perp W$ if $v \perp w, \forall v \in V, w \in W$
- (Orthogonal Complement) The space of all vectors orthogonal to V denoted as V^{\perp}.
- The row space is orthogonal to the nullspace (in R^{n}) and the column space is orthogonal to the left nullspace (in R^{m}). (proof).

Finally...

Fundamental Theorem of Linear Algebra II

1. $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$
2. $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$

Any vector can be expressed as

$$
\begin{align*}
\mathbf{x} & =\underbrace{x_{1} \mathbf{b}_{1}+\ldots+x_{r} \mathbf{b}_{r}}_{\mathbf{x}_{r}}+\underbrace{x_{r+1} \mathbf{b}_{r+1}+\ldots+x_{n} \mathbf{b}_{n}}_{\mathbf{x}_{n}} \tag{1}\\
& =\mathbf{x}_{r}+\mathbf{x}_{n}
\end{align*}
$$

Every matrix transforms its row space to its column space
(Comments about pseudo-inverse and invertibility)

Gram-Schmidt Orthogonalization

- (Projection) of \mathbf{b} on \mathbf{a} is $\frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}$, for unit vector $\left(\mathbf{a}^{T} \mathbf{b}\right) \mathbf{a}$
- (Schwartz Inequality) $\left|\mathbf{a}^{T} \mathbf{b}\right| \leq\|\mathbf{a}\|| | \mathbf{b} \|$
- (Orthogonal Matrix) $Q=\left[\mathbf{q}_{1} \ldots \mathbf{q}_{n}\right], Q^{T} Q=I$. (proof).
- (Length preservation) $\|Q \mathbf{x}\|=\|x\|$ (proof).

Given vectors $\left\{\mathbf{a}_{k}\right\}$, construct orthogonal vectors $\left\{\mathbf{q}_{k}\right\}$

1. $\mathbf{q}_{1}=\mathbf{a}_{1} /\left|\left|a_{1}\right|\right|$
2. for each $j, \mathbf{a}_{j}^{\prime}=\mathbf{a}_{j}-\left(\mathbf{q}_{1}^{T} \mathbf{a}_{j}\right) \mathbf{q}_{1}-\ldots-\left(\mathbf{q}_{j-1}^{T} \mathbf{a}_{j}\right) \mathbf{q}_{j-1}$
3. $\mathbf{q}_{j}=\mathbf{a}_{j}^{\prime} /\left\|\mathbf{a}_{j}^{\prime}\right\|$

QR Decomposition (Example)

Eigenvalues and Eigenvectors

- (Invariance) $A \mathrm{x}=\lambda \mathbf{x}$.
- (Characteristics Equation) $(A-\lambda I) \mathbf{x}=0$ (Nullspace)
- $\lambda_{1}+\ldots+\lambda_{n}=a_{11}+\ldots+a_{n n}$.
- $\lambda_{1} \ldots \lambda_{n}=\operatorname{det}(A)$.
- $\left(A=S \Lambda S^{-1}\right)$ Suppose there exist n linear independent eigenvectors for A. If S is the matrix whose columns are those independent vectors, then $A=S \Lambda S^{-1}$ where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- Diagonalizability is concerned with eigenvectors, and invertibility is concerned with eigenvalues.
- (Real symmetric matrix) Eigenvectors are orthogonal. So $A=Q \Lambda Q^{T}$. (Spectral Theorem)

Singular Value Decomposition

Any matrix can be factorized as $A=U \Sigma V^{T}$. Insightful? Finish.

Finish

Thanks to Maria (Marisol Flores Gorrido) for helping me with this tutorial.

