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Basics

Column vector x ∈ Rn, Row vector xT , Matrix A ∈ Rm×n.

Matrix Multiplication, (m× n)(n× k) ⇒ m× k, AB 6= BA.

Transpose AT , (AB)T = BT AT , Symmetric A = AT

Inverse A−1, doesn’t exist always, (AB)−1 = B−1A−1.

xTx is a scalar, xxT is a matrix.

Ax = b, three ways of expressing:
∑n

j=1
aijxj = bj ,∀j

rT
j x = bj ,∀j, where rj is jth row.

x1a1 + x2a2 + . . . + xnan = b (Linear Combination,
l.c.)

System of equations : Non-singular (unique solution),
singular (no solution, infinite solution). A Review of Linear Algebra – p.2/13



LU factorization
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, L = G−1F−1E−1
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LU factorization

(First non-singular case) If no row exchanges are
required, then A = LU (unique).

Solve Lc = b, then Ux = c

Another form A = LDU .

(Second non-singular case) There exist a permutation
matrix P that reorders the rows, so that PA = LU .

(Singular Case) No such P exist.

(Cholesky Decomposition) If A is symmetric, and
A = LU can be found without any row exchanges, then
A = LLT (also called square root of a matrix). (proof).

Positive Definite matrix always have a Cholesky
decompostion.
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Vector Space, Subspace and Matrix

(Real Vector Space) A set of “vectors" with rules for
vector addition and multiplication by real numbers. E.g.
R1, R2, . . . , R∞, Hilbert Space.

(8 conditions) Includes an identity vector and zero
vector, closed under addition and multiplication etc. etc.

(Subspace) Subset of a vector space, closed under
addition and multiplication (should contain zero).

Subspace “spanned" by a matrix (Outline the concept)
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Linear Independence, Basis, Dimension

(Linear Independence, l.i.) If x1a1 + x2a2 + . . . + xnan

only happens when x1 = x2 = . . . = 0, {ak} are called
linearly independent.

A set of n vectors in Rm are not l.i. if n > m (proof).

(Span) If every vector v in V can be expressed as a l.c.
of {ak}, then {ak} are said to span V .

(Basis) {ak} are called basis of V if they are l.i. and
span V (Too many and unique)

(Dimension) Number of vectors in any basis is called
dimension (and is same for all basis).
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Four Fundamental Spaces

Fundamental Theorem of Linear Algebra I

1. R(A) = Column Space of A; l.c. of columns; dim r.

2. N (A) = Nullspace of A; All x : Ax = 0; dim n − r.

3. R(AT ) = Row space of A; l.c. of rows; dim r.

4. N (AT ) = Left nullspace of A; All y : ATy = 0; dim m − r.

(Rank) r is called rank of the matrix. Inverse exist iff rank is
as large as possible. Question: Rank of uvT
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Orthogonality

(Norm) ||x||2 = xTx = x2
1 + . . . + x2

n

(Inner Product) xTy = x1y1 + . . . + xnyn

(Orthogonal) xTy = 0

Orthogonal ⇒ l.i. (proof).

(Orthonormal basis) Orthogonal vectors with norm =1

(Orthogonal Subspaces) V ⊥ W if v ⊥ w,∀v ∈ V,w ∈ W

(Orthogonal Complement) The space of all vectors
orthogonal to V denoted as V ⊥.

The row space is orthogonal to the nullspace (in Rn)
and the column space is orthogonal to the left nullspace
(in Rm).(proof).
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Finally...

Fundamental Theorem of Linear Algebra II

1. R(AT )⊥ = N (A)

2. R(A)⊥ = N (AT )

Any vector can be expressed as

x = x1b1 + . . . + xrbr
︸ ︷︷ ︸

xr

+ xr+1br+1 + . . . + xnbn
︸ ︷︷ ︸

xn

(1)

= xr + xn(2)

Every matrix transforms its row space to its column space

(Comments about pseudo-inverse and invertibility)
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Gram-Schmidt Orthogonalization

(Projection) of b on a is a
T
b

aT a
a, for unit vector (aTb)a

(Schwartz Inequality) |aTb| ≤ ||a||||b||

(Orthogonal Matrix)Q = [q1 . . .qn], QT Q = I. (proof).

(Length preservation) ||Qx|| = ||x|| (proof).

Given vectors {ak}, construct orthogonal vectors{qk}

1. q1 = a1/||a1||

2. for each j, a
′

j = aj − (qT
1 aj)q1 − . . . − (qT

j−1
aj)qj−1

3. qj = a
′

j/||a
′

j ||

QR Decomposition (Example)
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Eigenvalues and Eigenvectors

(Invariance)Ax = λx.

(Characteristics Equation) (A − λI)x = 0 (Nullspace)

λ1 + . . . + λn = a11 + . . . + ann.

λ1 . . . λn = det(A).

(A = SΛS−1) Suppose there exist n linear independent
eigenvectors for A. If S is the matrix whose columns are
those independent vectors, then A = SΛS−1 where
Λ = diag(λ1, . . . , λn).

Diagonalizability is concerned with eigenvectors, and
invertibility is concerned with eigenvalues.

(Real symmetric matrix) Eigenvectors are orthogonal.
So A = QΛQT . (Spectral Theorem)
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Singular Value Decomposition

Any matrix can be factorized as A = UΣV T . Insightful? Fin-

ish.
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Finish

Thanks to Maria (Marisol Flores Gorrido) for helping me
with this tutorial.
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