A Review of Linear Algebra

Mohammad Emtiyaz Khan

CS,UBC

Basics

- Column vector $\mathbf{x} \in R^n$, Row vector \mathbf{x}^T , Matrix $A \in R^{m \times n}$.
- Matrix Multiplication, $(m \times n)(n \times k) \Rightarrow m \times k$, $AB \neq BA$.
- Transpose A^T , $(AB)^T = B^T A^T$, Symmetric $A = A^T$
- Inverse A^{-1} , doesn't exist always, $(AB)^{-1} = B^{-1}A^{-1}$.
- $\mathbf{x}^T \mathbf{x}$ is a scalar, $\mathbf{x} \mathbf{x}^T$ is a matrix.
- $A\mathbf{x} = \mathbf{b}$, three ways of expressing:

•
$$\sum_{j=1}^{n} a_{ij} x_j = b_j, \forall j$$

- $\mathbf{r}_j^T \mathbf{x} = b_j, \forall j$, where \mathbf{r}_j is j^{th} row.
- $x_1\mathbf{a_1} + x_2\mathbf{a_2} + \ldots + x_n\mathbf{a_n} = \mathbf{b}$ (Linear Combination, I.C.)
- System of equations : Non-singular (unique solution), singular (no solution, infinite solution).
 A Review of Linear Algebra – p.2/13

LU factorization

LU factorization

- (First non-singular case) If no row exchanges are required, then A = LU (unique).
- Solve $L\mathbf{c} = \mathbf{b}$, then $U\mathbf{x} = \mathbf{c}$
- Another form A = LDU.
- (Second non-singular case) There exist a permutation matrix P that reorders the rows, so that PA = LU.
- (Singular Case) No such P exist.
- (Cholesky Decomposition) If A is symmetric, and A = LU can be found without any row exchanges, then $A = LL^T$ (also called square root of a matrix). (proof).
- Positive Definite matrix always have a Cholesky decomposition.

Vector Space, Subspace and Matrix

- (Real Vector Space) A set of "vectors" with rules for vector addition and multiplication by real numbers. E.g. $R^1, R^2, \ldots, R^\infty$, Hilbert Space.
- (8 conditions) Includes an identity vector and zero vector, closed under addition and multiplication etc. etc.
- (Subspace) Subset of a vector space, closed under addition and multiplication (should contain zero).
- Subspace "spanned" by a matrix (Outline the concept)

$$x_1 \begin{bmatrix} 1\\5\\2 \end{bmatrix} + x_2 \begin{bmatrix} 0\\4\\4 \end{bmatrix} = \begin{bmatrix} b_1\\b_2\\b_3 \end{bmatrix}$$

Linear Independence, Basis, Dimension

- (Linear Independence, I.i.) If $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n$ only happens when $x_1 = x_2 = \ldots = 0$, $\{\mathbf{a}_k\}$ are called linearly independent.
- A set of n vectors in \mathbb{R}^m are not l.i. if n > m (proof).
- (Span) If every vector v in V can be expressed as a l.c. of $\{a_k\}$, then $\{a_k\}$ are said to span V.
- (Basis) $\{a_k\}$ are called basis of V if they are I.i. and span V (Too many and unique)
- (Dimension) Number of vectors in any basis is called dimension (and is same for all basis).

Four Fundamental Spaces

Fundamental Theorem of Linear Algebra I

- 1. $\mathcal{R}(A) =$ Column Space of *A*; I.c. of columns; dim *r*.
- 2. $\mathcal{N}(A) = \text{Nullspace of } A$; All $x : A\mathbf{x} = 0$; dim n r.
- 3. $\mathcal{R}(A^T) = \text{Row space of } A$; I.c. of rows; dim r.
- 4. $\mathcal{N}(A^T) = \text{Left} \text{ nullspace of } A$; All $y : A^T \mathbf{y} = 0$; dim m r.

(Rank) r is called rank of the matrix. Inverse exist iff rank is as large as possible. Question: Rank of uv^T

Orthogonality

- (Norm) $||\mathbf{x}||^2 = \mathbf{x}^T \mathbf{x} = x_1^2 + \ldots + x_n^2$
- $Inner Product) \mathbf{x}^T \mathbf{y} = x_1 y_1 + \ldots + x_n y_n$
- (Orthogonal) $\mathbf{x}^T \mathbf{y} = 0$
- Orthogonal \Rightarrow I.i. (proof).
- Orthonormal basis) Orthogonal vectors with norm =1
- (Orthogonal Subspaces) $V \perp W$ if $v \perp w, \forall v \in V, w \in W$
- (Orthogonal Complement) The space of all vectors orthogonal to V denoted as V^{\perp} .
- The row space is orthogonal to the nullspace (in Rⁿ) and the column space is orthogonal to the left nullspace (in R^m).(proof).

Finally...

Fundamental Theorem of Linear Algebra II

1.
$$\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$$

2.
$$\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$$

Any vector can be expressed as

(1)
$$\mathbf{x} = \underbrace{x_1 \mathbf{b}_1 + \ldots + x_r \mathbf{b}_r}_{\mathbf{x}_r} + \underbrace{x_{r+1} \mathbf{b}_{r+1} + \ldots + x_n \mathbf{b}_n}_{\mathbf{x}_n}$$

(2) $= \mathbf{x}_r + \mathbf{x}_n$

Every matrix transforms its row space to its column space (Comments about pseudo-inverse and invertibility)

Gram-Schmidt Orthogonalization

- (Projection) of b on a is $\frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} \mathbf{a}$, for unit vector $(\mathbf{a}^T \mathbf{b})\mathbf{a}$
- (Schwartz Inequality) $|\mathbf{a}^T \mathbf{b}| \le ||\mathbf{a}|| ||\mathbf{b}||$
- (Orthogonal Matrix) $Q = [\mathbf{q}_1 \dots \mathbf{q}_n], Q^T Q = I.$ (proof).
- (Length preservation) $||Q\mathbf{x}|| = ||x||$ (proof).

Given vectors $\{a_k\}$, construct orthogonal vectors $\{q_k\}$

1.
$$\mathbf{q}_1 = \mathbf{a}_1 / ||\mathbf{a}_1||$$

2. for each j , $\mathbf{a}'_j = \mathbf{a}_j - (\mathbf{q}_1^T \mathbf{a}_j)\mathbf{q}_1 - \dots - (\mathbf{q}_{j-1}^T \mathbf{a}_j)\mathbf{q}_{j-1}$
3. $\mathbf{q}_j = \mathbf{a}'_j / ||\mathbf{a}'_j||$

QR Decomposition (Example)

Eigenvalues and Eigenvectors

- (Invariance) $A\mathbf{x} = \lambda \mathbf{x}$.
- (Characteristics Equation) $(A \lambda I)\mathbf{x} = 0$ (Nullspace)

$$\lambda_1 + \ldots + \lambda_n = a_{11} + \ldots + a_{nn}.$$

•
$$\lambda_1 \dots \lambda_n = det(A)$$
.

- $(A = S\Lambda S^{-1})$ Suppose there exist *n* linear independent eigenvectors for A. If S is the matrix whose columns are those independent vectors, then $A = S\Lambda S^{-1}$ where $\Lambda = diag(\lambda_1, \ldots, \lambda_n)$.
- Diagonalizability is concerned with eigenvectors, and invertibility is concerned with eigenvalues.
- (Real symmetric matrix) Eigenvectors are orthogonal. So $A = Q\Lambda Q^T$. (Spectral Theorem)

Singular Value Decomposition

Any matrix can be factorized as $A = U\Sigma V^T$. Insightful? Finish.

Finish

Thanks to Maria (Marisol Flores Gorrido) for helping me with this tutorial.