The Variational Adaptive-Newton Method

Mohammad Emtiyaz Khan', Wu Lin", Voot Tangkaratt’, Zuozhu Liu*, Didrik Nielsen

'Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
*Singapore University of Technology and Design, Singapore.

5 Results

Exploration based on Bayesian inference is extremely popular, but it is also compu-
tationally demanding. Here we present Variational Adaptive Newton (VAN), which
IS a black-box optimization method.

Is particularly useful for explorative-learning tasks such as active learning and
reinforcement learning.

IS a second-order method and is related to adaptive-gradient methods.
requires computations that are similar to continuous optimization methods. 2 b

Exploration to Avoid Local Minima:

Function f(0)

We show that VAN can avoid local min-
ima. The top figure shows the function
f(@) = sinc(@) with a blue curve with a
global minimum at 8 = 1. The second
plot shows the VO objective L(u,o) =
Eq4|f(0)]. The red points and arrows show
the iterations of VAN. The progression
of the distribution g is shown in the bot-
tom figure, where darker curves indicate

Variational optimization (VO) (Staines and Barber, 2012) optimizes an objective func- % higher iterations. As desired,the distri-
tion f by optimizing its expectation w.r.t. a distribution g. We will here consider 2 1 bution peaks around 6" as iterations in-
Gaussian q(0) := N (0|u, X): 2 os crease.
A
Standard optimization : 0" = argmin f(0) T . X . .
0 0
Variational optimization : ~ {p*, X"} = argmin Ky, x) [f(0)] := L(u, X),
{n.Z} Supervised & Unsupervised Learning:

We show that VAN is a general-purpose algorithm and gives comparable results to ex-
Isting methods. Figures show experimental results on different learning tasks. Datasets

V-SGD : pyq = py — pr [@ ﬁt} are specified in the title.
- +1 = Z
~ Lasso regression with VAN, sVAN and iRidge.
2.1 =2;— Py [Vzﬁt} - (4) J J

One straightforward approach to optimize L is to use SGD:

(a): LassoReg/YearPredictionMSD (b): LassoReg/bank32nh
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Since p, X are parameters of a distribution, natural-gradient updates are preferred. 0-5
Wiestra et al. (2008) proposed such a method and shows that it improves stability.
However, their update requires computation of the Fisher information matrix, which

0.2

has memory complexity O(D*), where D is the length of 8. Our method is also a S| s
natural-gradient method, but with much simpler updates that requires O(D?) memory. > =
0.1f
3 Variational Adaptive-Newton
# Data Passes # Data Passes
For a Gaussian with parameters 17 := {1, £} we have: Logistic regression with VAN and Newton’s method.
» Mean parameters: m := {u, uuT + Z} 03 (€): BatchLogReg/usps_3vsS 06 _(f): BatchLogReg/ala
» Natural parameters: X := {X'p, 17"} o5 VA o5 VA
0.25 1 + Newton | + Newton
Mirror-descent in mean parameters <= natural gradients in natural parameters: % %
| 1 - ;) % 0.57 |
m;. 1 = argmin {mTVmﬁt +- BDKL[Q | qt]} = A1 == S1(A) 1VA£Jt . o
N ~ < Naturararadient |
1 _
— VL +5(An1 —A) =0. 008 SRR D RETH S G - S AN BUTE S A
Natural gradient 1 10 30 1 10 30
# Data Passes # Data Passes
Rewriting this and using Bonnet’s theorem, we obtain the VAN updates: . . .
J J P Logistic regression with sVAN, sVAN-D and AdaGrad.
VAN :  pyoq = g — Bt P Eq [Vof(6)] M refers to the mini-batch size for stochastic methods.
Pt =Pi+ B Eq [V5,f(6)] 06 () StochasticLogReglusps_3vs5 066 ) StochasticLogReg/ala
_ vy 1; Qi : _ O SsVAN-10 O SsVAN-10
where P; = X' is the precision matrix and q; = N (0|u;, X;). o SVANO o SvANIO
] 0 sVAN-D-10 0 sVAN-D-10
Connections to Newton’s Method: & g
. = 0.34 7 M=100 | o= 06} M=100
VAN is related to Newton’s Method: 3 ks
_1 A, ~
Newton’s Method : 0.1 = 0; — p; [V5,f(0 Vof(0¢)]. 5 WY -
t+1 t — Pt [ g0l ( t)] [Vof(61)] ( ) - M O Ctigy oyt A
Instead c.)f. scaling .the gradllents by Hessmn, .VAN scales the averaged gradients by 101 100 10l 101 100 1ol
the precision matrix P; which contains a weighted sum of the past averaged Hes- # Data Passes # Data Passes
sians.
Example of Explorative Learning:
A Large-Scale Variant: We show that VAN gives better results than methods without exploration for active learn-
By using a mean-field approximation for g, we obtain a diagonal version of VAN: Ing and reinforcement learning. The left figures shows data-space exploration using
active learning. The right figure shows parameter-based exploration (Ruckstie3 et al.,
VAN-D :  py,q = p; — Bt diag(sti1) "Eq, [Vof(0)] 2010) in reinforcement learning.
Sti1 = St + filiq [(6)) 06 ActiveLearning/usps_3vs5 RL/HalfCheetah-v1
Connections to AdaGrad: O  sVAN-Active-10 2000 7 PO
VAN-D is very similar to AdaGrad (Duchi et al., 2011) shown below: SVAN-10 v gkl
) ul
AdaGrad : 0;.1 = 0; — pdiag(si1) /2g(6;) (6) S = Jso0 | *
7 = 034} M=10 k7 ~ |
Sty1 = St + [g(et) © g(gt)] ( ) D - —— SVAN-D-10
— $ —— sVAN-D-1
Connections to Variational Inference: " ; e
Using VAN for VI is equivalent to Conjugate-Computation Variational Inference (CVI) 008 L = | . %P
(Khan and Lin, 2017). A direct consequence of this is that CVI also is a second-order 1071 101 0 1500 3000
method when g is a Gaussian distribution. #Data Passes Traning Episode
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