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1 Introduction
Exploration based on Bayesian inference is extremely popular, but it is also compu-
tationally demanding. Here we present Variational Adaptive Newton (VAN), which

I is a black-box optimization method.
I is particularly useful for explorative-learning tasks such as active learning and

reinforcement learning.
I is a second-order method and is related to adaptive-gradient methods.
I requires computations that are similar to continuous optimization methods.

2 Variational Optimization using Gaussians
Variational optimization (VO) (Staines and Barber, 2012) optimizes an objective func-
tion f by optimizing its expectation w.r.t. a distribution q. We will here consider
Gaussian q(θ) := N (θ|µ,Σ):

Standard optimization : θ∗ = argmin
θ

f (θ) (1)

Variational optimization : {µ∗,Σ∗} = argmin
{µ,Σ}

EN (θ|µ,Σ) [f (θ)] := L(µ,Σ), (2)

One straightforward approach to optimize L is to use SGD:

V-SGD : µt+1 = µt − ρt

[
∇̂µLt

]
(3)

Σt+1 = Σt − ρt

[
∇̂ΣLt

]
. (4)

Since µ, Σ are parameters of a distribution, natural-gradient updates are preferred.
Wiestra et al. (2008) proposed such a method and shows that it improves stability.
However, their update requires computation of the Fisher information matrix, which
has memory complexity O(D4), where D is the length of θ. Our method is also a
natural-gradient method, but with much simpler updates that requires O(D2) memory.

3 Variational Adaptive-Newton
For a Gaussian with parameters η := {µ,Σ} we have:

I Mean parameters: m := {µ,µµT + Σ}
I Natural parameters: λ := {Σ−1µ,−1

2Σ
−1}

Mirror-descent in mean parameters ⇐⇒ natural gradients in natural parameters:

mt+1 = argmin
m

{
mT∇mLt +

1
β
DKL[q ‖qt]

}
︸ ︷︷ ︸ ⇐⇒ λt+1 = λt − β I(λt)

−1∇λLt︸ ︷︷ ︸
Natural gradient

=⇒ ∇mLt︸ ︷︷ ︸
Natural gradient

+1
β(λt+1 − λt) = 0.

Rewriting this and using Bonnet’s theorem, we obtain the VAN updates:

VAN VAN : µt+1 = µt − βt P−1
t+1Eqt [∇θf (θ)]

Pt+1 = Pt + βt Eqt

[
∇2
θθf (θ)

]
,

where Pt = Σ−1
t is the precision matrix and qt = N (θ|µt,Σt).

Connections to Newton’s Method:
VAN is related to Newton’s Method:

Newton’s Method : θt+1 = θt − ρt
[
∇2
θθf (θt)

]−1
[∇θf (θt)] . (5)

Instead of scaling the gradients by Hessian, VAN scales the averaged gradients by
the precision matrix Pt which contains a weighted sum of the past averaged Hes-
sians.

A Large-Scale Variant:
By using a mean-field approximation for q, we obtain a diagonal version of VAN:

VAN VAN-D : µt+1 = µt − βt diag(st+1)−1Eqt [∇θf (θ)]

st+1 = st + βtEqt [h(θ)]

Connections to AdaGrad:
VAN-D is very similar to AdaGrad (Duchi et al., 2011) shown below:

AdaGrad : θt+1 = θt − ρtdiag(st+1)−1/2g(θt) (6)
st+1 = st + [g(θt)� g(θt)] (7)

Connections to Variational Inference:
Using VAN for VI is equivalent to Conjugate-Computation Variational Inference (CVI)
(Khan and Lin, 2017). A direct consequence of this is that CVI also is a second-order
method when q is a Gaussian distribution.

5 Results
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Exploration to Avoid Local Minima:

We show that VAN can avoid local min-
ima. The top figure shows the function
f (θ) = sinc(θ) with a blue curve with a
global minimum at θ∗ = 1. The second
plot shows the VO objective L(µ,σ) =
Eq[f (θ)]. The red points and arrows show
the iterations of VAN. The progression
of the distribution q is shown in the bot-
tom figure, where darker curves indicate
higher iterations. As desired,the distri-
bution peaks around θ∗ as iterations in-
crease.

Supervised & Unsupervised Learning:
We show that VAN is a general-purpose algorithm and gives comparable results to ex-
isting methods. Figures show experimental results on different learning tasks. Datasets
are specified in the title.

Lasso regression with VAN, sVAN and iRidge.
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Logistic regression with VAN and Newton’s method.
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(e): BatchLogReg/usps_3vs5
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(f): BatchLogReg/a1a
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Logistic regression with sVAN, sVAN-D and AdaGrad.
M refers to the mini-batch size for stochastic methods.
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(i): StochasticLogReg/usps_3vs5
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Example of Explorative Learning:
We show that VAN gives better results than methods without exploration for active learn-
ing and reinforcement learning. The left figures shows data-space exploration using
active learning. The right figure shows parameter-based exploration (Ruckstieß et al.,
2010) in reinforcement learning.
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