Fast Computation of Uncertainty in Deep Learning

Mohammad Emtiyaz Khan
RIKEN Center for AI Project, Tokyo, Japan
http://emtiyaz.github.io

Joint work with
Wu Lin (UBC), Didrik Nielsen (RIKEN), Voot Tangkaratt (RIKEN)
Yarin Gal (University of Oxford), Akash Srivastava (University of Edinburgh)
Zuozhu Liu (SUTD, Singapore)
Long-term Goal

“To understand the fundamental principles of learning from data and use them to develop algorithms that can learn like living beings.”
Learning by exploring at the age of 6 months
Converged at the age of 12 months
Transfer Learning at 14 months
Long-term Goal

“To understand the fundamental principles of learning from data and use them to develop algorithms that can learn like living beings.”
Outline

• Uncertainty
• “Bayesian” Deep Learning
• Fast computation of uncertainty
 – ICML 2018, Weight-perturbation in Adam to get uncertainty estimates (collaboration with University of Oxford and University of Edinburgh).
• Results
Uncertainty Estimation

Deep Learning

Bayesian Deep Learning

(taken from Blundell et al. 2015)
Example 1: Depth Estimation

Scene

Uncertainty of depth estimates

(taken from Kendall et al. 2017)
Example 2: Which is a Better Fit?

Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise”
Example 2: Which is a Better Fit?

When the data is scarce and noisy, e.g., in medicine, and robotics.
To Improve Deep Learning

Data-efficiency, robustness, active learning, continual/online learning, exploration
Bayesian Deep Learning

Compute a probability distribution over the unknowns given the data
“to know how much we don’t know”
Bayesian Inference is Difficult!

Bayes’ rule: $p(w|D) = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)dw}$

- **Approximate Bayesian Inference using gradient methods (SGD/Adam)**
 - Gaussian VI: Bayes by Backprop (Blundell et al. 2015), Practical VI (Graves et al. 2011), Black-box VI (Rangnathan et al. 2014) and many more....

- **Our work uses natural-gradient methods (faster and simpler than gradients methods)**
 - Khan & Lin (Alstats 2017), Khan et al. (ICML 2018), Khan & Nielsen (ISITA2018)
Uncertainty Estimation with RMSprop

Model: \[p(\mathcal{D}|\theta) \mathcal{N}(\theta|\mathbf{0}, \lambda \mathbf{I}) \]

DNN Likelihood **Gaussian Prior**

RMSprop for Deep Learning

\[
\begin{align*}
\theta & \leftarrow \mu \\
g & \leftarrow \frac{1}{M} \sum_i \nabla_{\theta} \log p(\mathcal{D}_i|\theta) \\
s & \leftarrow (1 - \beta)s + \beta g^2 \\
\mu & \leftarrow \mu + \alpha \frac{g}{\sqrt{s + \delta}}
\end{align*}
\]

Variational RMSprop (Vprop) for Bayesian Deep Learning

\[
\begin{align*}
\theta & \leftarrow \mu + \epsilon, \text{ where } \epsilon \sim \mathcal{N}(0, Ns + \lambda) \\
g & \leftarrow \frac{1}{M} \sum_i \nabla_{\theta} \log p(\mathcal{D}_i|\theta) \\
s & \leftarrow (1 - \beta)s + \beta g^2 \\
\mu & \leftarrow \mu + \alpha \frac{g + \lambda \mu/N}{\sqrt{s + \lambda/N}}
\end{align*}
\]

Note 1: Choose a small minibatch size.
Note 2: Similar version exist for Adam (Vadam)
Note 3: A better version is VOGN (details in the paper)
Faster, Simpler, and More Robust

Regression on Australian-Scale dataset using deep neural nets for various number of minibatch size.

Batch Size: 1

- Existing Method (BBVI)
- Our method (Vadam)
- Our method (VOGN)
Faster, Simpler, and More Robust

Results on MNIST digit classification (for various values of Gaussian prior precision parameter λ)
Deep Reinforcement Learning

No Exploration (SGD)
Reward = 2860

Exploration using Vadam
Reward = 5264
Outline

• Uncertainty
• “Bayesian” Deep Learning
• Fast computation of uncertainty
 – ICML 2018, Weight-perturbation in Adam to get uncertainty estimates (collaboration with University of Oxford and University of Edinburgh).
• Results
Fast yet Simple Natural-Gradient Descent for Variational Inference in Complex Models,
Invited paper at (ISITA 2018) M.E. Khan and D. Nielsen, [Pre-print]

Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam,

Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models,
(AISTATS 2017) M.E. Khan and W. Lin [Paper] [Code for Logistic Reg + GPs] [Code for Correlated Topic Model]
Thanks!

https://emtiyaz.github.io