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Long-term Goal

“To understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”
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Outline

Uncertainty
“Bayesian” Deep Learning

Fast computation of uncertainty

— ICML 2018, Weight-perturbation in Adam to get
uncertainty estimates (collaboration with
University of Oxford and University of Edinburgh).

Results



Uncertainty Estimation

Deep Learning Bayesian Deep Learning
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(taken from Blundell et al. 2015)




Example 1: Depth Estimation

Uncertainty of
depth estimates

(taken from Kendall et al. 2017) 9



Example 2: Which is a Better Fit?
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Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise” 4
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Example 2: Which is a Better Fit?

When the
data is scarce
and noisy,
e.g., in
medicine,
and robotics.



To Improve Deep Learning

Data-efficiency, robustness, active
learning, continual/online learning,
exploration
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Bayesian Deep Learning

Compute a probability distribution
over the unknowns given the data

“to know how much we don’t know”
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Bayesian Inference is Difficult!

Data _~ Parameters
: p(D|0)p(6
e (01P) = TS

Intractable integral

* Approximate Bayesian Inference using
gradient methods (SGD/Adam)

— Gaussian VI: Bayes by Backprop (Blundell et al. 2015), Practical VI (Graves et al.
2011), Black-box VI (Rangnathan et al. 2014) and many more....

* Our work uses natural-gradient methods

(faster and simpler than gradients methods)
— Khan & Lin (Alstats 2017), Khan et al. (ICML 2018), Khan & Nielsen (ISITA2018)
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Uncertainty Estimation with RMSprop
Model: p(D\@)N(@IO, )\])

DNN Likelihood Gaussian Prior

RMSprop for Variational RMSprop (Vprop) for
Deep Learning Bayesian Deep Learning
0« u 6 < u+e, where e ~ N(0, Ns+ \)
g 4> Vologp(Dilo) | 94 57 ) Velogp(Di[f)
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Note 1: Choose a small minibatch size.
Note 2: Similar version exist for Adam (Vadam)
Note 3: A better version is VOGN (details in the paper)



Faster, Simpler, and More Robust

Regression on Australian-Scale dataset using deep neural
nets for various number of minibatch size.

Batch Size: 1

-=== Existing Method (BBVI)
Our method (Vadam)
Our method (VOGN)
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Faster, Simpler, and More Robust

Results on MNIST digit classification (for various values of
Gaussian prior precision parameter A)

Precision: 0.01
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Deep Reinforcement Learning

No Exploration (SGD) Exploration using Vadam
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Thanks!

https://emtiyaz.github.io
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