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Overview and Goals

Standard Deep Learning Continual Lifelong Learning
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Goal: to design low-cost Al systems that can learn and improve continually
throughout their lives, just like humans and animals. Currently, deep

learning requires a large amount of data which is costly, rigid, and cannot Observe Update Observe Update
. . . . . .. . Select a random Jp:::“; Dried categories Deep categories Deep
quickly adapt. We aim to fix this with a new principle called Bayes-duality. subset of images o -] Dogus.ca Network o ve. Tiaer Network
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Bayes-duality relates models parameters (left) to the data
examples (small dots at the right). The principle enables us to
identify a few memorable examples (big black circle).
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Summary for the year 2025 (paper number shown in green boxes)
1. We provide new connections between Federated ADMM and
Variational Bayes and propose new algorithms using this connections.
2. We show, both in theory and practice, that variational Bayesian learning
finds flatter solutions than standard training algorithms for neural nets.
: Data examples
3. We propose a compact memory method to drastically reduce the | Ve

storage for continual learning without forgetting. N
4. We propose a method that allows LLMs to leverage parameter \ .

\\ y Model fit
Memorable examples

The memorable examples can be
reused later during training with the new
data. This avoids forgetting of the past.
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uncertainty, and show it improves the quality of generated text.
5. We highlight a fundamental connection between information geometry
and variational Bayes and discuss its consequences.

Bayesian New data

Duality
Principle

Variance

<

Input

Connecting Federated ADMM to Bayes

Problem & Contribution [1]: We provide new connections between Federated ADMM
and Variational Bayes, showing that the dual variables in ADMM naturally emerge
through the “site” parameters in VB for isotropic Gaussian posteriors. Based on this,
we derive two new extensions of ADMM by using full-covariance Gaussians.
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A line-by-line correspondence between Federated ADMM and Partition Variational Inference
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New ADMM extensions
Dataset | Comm | FedAvg  FedProx  FedDyn FedLap FedLap FedLap
Round -Cov -Func
FMNIST 10 72.3(0.4) 72.2(0.3) 75.3(0.8) | 72.1(0.2) 75.0(0.6) (10.3) 73.7(0.7)
(homog) 25 717.77(0.3) 77.40.1) 77.5(0.8) | 77.1(0.1) 79.8(0.4) 1+2.3) 77.9(0.3)
50 80.0(0.2) 80.3(0.1) 78.2(0.5) | 80.2(0.1) 81.8(0.1) (12.6) 80.0(0.2)
FMNIST 10 70.4(0.9) 69.9(04) 73.000.6) | 71.3(0.9) 74.6(0.7) (11.6)  72.2(0.9)
(heterog) 25 74.3(0.5) 74.7(0.6) 74.6(0.4) | 74.3(0.4) 78.3(1.0) 13.7) 75.4(0.8)
50 76.0(0.7) 76.9(0.9) 74.6(0.5) | 77.6(0.7) 80.5(0.6) (15.90 78.1(0.7)
1. S. Swaroop, M. E. Khan, F. Doshi-Velez, Connecting Federated ADMM to Bayes, ICLR 2025.

Variational Learning at the Edge of Stability

Problem & Contribution [2]: Variational learning has recently been shown to work
well for deep neural networks, but the reasons for success are not fully understood.
We provide a theory explaining why variational learning works well for nonconvex
problems. In the presence of multiple minima, it prefers flatter minima. We
characterize flatness of found minima via learning rate, posterior shape & samples.

Sharp Posterior finds sharp minimum Flat posterior finds flatter minimum
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Our theory closely predicts the sharpness of solutions
found during deep neural network training
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Intuition: Posterior noise helps to
escape from sharp minima
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2. A. Ghosh, B. Cong, R. Yokota, S. Ravishankar, R. Wang, M. Tao, M. E. Khan, T. Méllenhoff.
Variational Learning Finds Flatter Solutions at the Edge of Stability, NeurlPS 2025 (spotlight).

Compact Memory for Continual Logistic Regression

Problem & Contribution [3]: Continual learning methods need to store a large
number of past example to avoid forgetting. Here, we drastically reduce the size of
the memory without any significant change in the performance.

We use Hessian matching to find memory and weight in two stage procedure:
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Our method achieves near-batch performance with significantly less memory.

=p Step 1:
Learn parameter 6,4 with given (Ui, wy)
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=p Step 2:
Learn memory (Uiy1, We41) by Hessian matching
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Continual learning on Four moon dataset

3. Y. Jung, H. Lee, W. Chen, T. Moéllenhoff, Y. Li, J. Lee, M. E. Khan, Compact Memory for
Continual Logistic Regression, NeurlPS 2025.

Other Works

Uncertainty-Aware Decoding: LLMs are known to generate undesirable outputs, for
example, hallucinated text. In this work, we use parameter uncertainty to improve
text generation. By using our previously developed variational training methods
which obtain parameter uncertainty for free, we improve LLMs on several tasks such
as translation and document summarization without incurring any overhead.

4. N. Daheim, C. Meister, T. Mollenhoff, I. Gurevych. Uncertainty-Aware Decoding with Minimum
Bayes Risk. ICLR 2025.

Information geometry of VB: We highlight a fundamental connection between
information geometry and variational Bayes and discuss its consequences.

5. Khan. Information Geometry of Variational Bayes, Information geometry, Springer Nature 2025

Theoretical Guarantees for Natural-Gradient Methods: Natural gradient methods are
among the best performing approaches for variational inference, but their
convergence properties are not understood. This work proves novel guarantees in the
Gaussian case by considering a square-root parametrization of the covariance.

6. N. Kumar, T. Méllenhoff, M. E. Khan, A. Lucchi. Optimization Guarantees for Square-Root
Natural-Gradient Variational Inference. TMLR 2025.

Label Smoothing: We show that variational learning naturally induces an adaptive
label smoothing where label noise is specialized for each example. We show that the
form of the adaptive noise is similar to an existing proposal by Zhang et al. (2021).

7.S. H. Yang, Z. Liu, G. M. Marconi, M. E. Khan, Variational Learning Induces Adaptive Label
Smoothing. AABI 2025



	Slide 1

