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Overview and Goals
Goal: to design low-cost AI systems that can learn and improve continually 
throughout their lives, just like humans and animals. Currently, deep 
learning requires a large amount of data which is costly, rigid, and cannot 
quickly adapt. We aim to fix this with a new principle which Bayes-duality. 

Summary for the year 2024 (paper number shown in green boxes)
1. We obtain state-of-the-art result at GPT-2 level with a new variational 

algorithm called Improved Variational Online Newton (IVON).
2. IVON also improves performance for LoRA fintetuning over standard

methods such as AdamW.
3. We propose new uncertainty-based methods to understand and 

improve model-merging in Large Language Models (LLMs).
4. We propose new conformal prediction methods to address challenging 

cases, such as, heteroscedastic, multimodal, or skewed distributions.
5. We participated in a position paper to emphasize the importance of 

Bayesian methods for large-scale AI based on deep learning.

Continual Lifelong LearningStandard Deep Learning

IVON Model Merging
Problem: LLMs can be merged with finetuned models by a simple 
parameter addition. This works surprisingly well, but why? 

3. N. Daheim, T. Möllenhoff, E. Ponti, I. Gurevych, M. E. Khan, Model Merging by Uncertainty-
Based Gradient Matching, ICLR 2024.

1. Nickl, Xu*, Tailor*, Moellenhoff, Khan, The Memory Perturbation Equation: Understanding 
Model’s Sensitivity to Data, NeurIPS 2023.

A New Conformal Prediction Method

Position: Bayes is Needed in the Age of Large-Scale AI

5. M. E. Khan (among many authors), Position paper: Bayesian Deep Learning in the Age of 
Large-Scale AI, ICML 2024.

Summary: We argue that Bayesian deep learning can improve the capabilities of 
deep learning, while acknowledging many of its challenges with and highlighting 
new research addressing the obstacles.

Contribution: We connect the inaccuracy of model merging to 
mismatch in the gradients. When gradient mismatch is small, 
parameter addition works well. To reduce large gradient mismatch, 
we propose a Hessian-based method to reduce the error.
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Figure 2: Left: We merge models trained on 8 image classification tasks with a pretrained ViT and
vary ↵t. Our method performs similarly to TA for smaller but significantly better for higher ↵t,
improving over the best ↵t for TA. Right: We add four sentiment analysis tasks to RoBERTa trained
on IMDB. Our merging function dominates TA and requires no tuning of scaling factors. We plot
the average over individual dataset accuracies.

IMDB Yelp RT SST2 Amazon Avg. True Avg.
Parametrization Accuracy (")
TA (↵t = 1) 90.5 95.6 86.4 91.6 94.9 91.8 94.7
Ours 94.7 ("4.2) 97.3 ("1.7) 90.2 ("3.8) 93.7 ("2.1) 96.7 ("1.8) 94.5 ("2.7) 96.6 ("1.9)

Table 2: Reducing gradient mismatch in Eq. 10 when scaling is not tuned (↵t = 1) is crucial for
merging, here outlined for adding four sentiment analysis tasks to RoBERTa trained on IMDB. Avg.:
average over individual dataset accuracies. True Avg.: accuracy calculated over all predictions.

The Bayesian connection also gives direct ways to improve model merging and also reduce the
computational burden. For example, one way to improve would be to take a few optimization steps
aiming for the MAP estimate of the exact posterior, and then use the current iterate for the Taylor’s
approximation in Eq. 10. Solutions obtained this way will provably get better as the number of
steps are increased. This is in contrast with other approaches, for example, by Ortiz-Jimenez et al.
(2023) who propose to train in the linearized tangent space which may not always converge to the
right solution. Another way to improve is to use better posterior approximation, for example, using
variational inference (Graves, 2011; Blundell et al., 2015; Osawa et al., 2019) which is known to
yield a more global approximation (Opper & Archambeau, 2009). Here, we focus on improving
merging without retraining and leave the iterative optimization as future work.

The Bayesian view also connects to similar efforts in continual learning to avoid catastrophic for-
getting (Kirkpatrick et al., 2017) where a Bayesian motivation is used to justify the choice of Fisher-
based regularizer (Huszár, 2018). Our contribution essentially gives an extension of such ideas to
model merging. Our approach is also connected to Knowledge-Adaptation priors (Khan & Swaroop,
2021) where a variety of adaptation tasks are solved by gradient reconstruction. The connection also
justifies the choice of diagonal Fisher in place of the Hessian, which essentially forms a Generalized
Gauss-Newton approximation (Schraudolph, 2002; Pascanu & Bengio, 2013; Martens, 2020) of it.
In our experiments, we use a Monte-Carlo estimator

P
i [r✓`i(✓)]

2 of the diagonal Fisher where
i is summed over examples in the data. A naive implementation would require an additional pass
over (a subset of) the training data and additional gradient computations, but it is also possible to
build the estimate of Fisher in an online fashion (Schwarz et al., 2018) or even reuse the quantities
already computed within Adam-style optimizers (Kingma & Ba, 2015) which are accurate for small
minibatch sizes (Khan et al., 2018, Thm. 1). With this, no additional overhead is incurred while
keeping the data private. In contrast, tuning scaling factors on a validation set requires additional
data and tuning, and could be infeasible for large T .

4 EXPERIMENTS & RESULTS

We first show the relationship between gradient mismatch and test error for language models in
Sec. 4.1. Then, we consider the setting of task addition, and add tasks to a pretrained ViT (Doso-
vitskiy et al., 2021) (Sec. 4.2) and LLM (Sec. 4.3). Finally, we consider data removal and remove
toxicity and hallucinations from language models (Sec. 4.4). In all experiments, we approximate
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Figure 1: The left panel illustrates our approach. We connect the error � of the merged model
✓merged to the gradient mismatch over losses ¯̀t and propose a new method that reduces the mismatch
by using the Hessian Ht and error �t of the individual models ✓t. The right panel shows an example
of adding datasets to RoBERTa trained on IMDB. We clearly see that reducing mismatch reduces
test error of task arithmetic (↵t = 1). We consider 5 datasets, indicated by a number on the markers.

2 MODEL MERGING BY PARAMETER AVERAGING

We consider merging multiple models that share the same architecture but are trained on different
datasets, for example, by fine-tuning a large pretrained model. We denote each of the T > 1 models
by its parameter vector ✓t 2 Rd. Throughout this section, we will use an LLM, denoted by ✓LLM,
but the results straightforwardly apply to other pretrained models. Given ✓LLM and different ✓t, our
goal is to understand the inaccuracies in existing parameter-averaging methods and improve them.

We focus on the following simple weighted-averaging scheme: ✓̄ = S0 ✓LLM +
PT

t=1 St ✓t, where
✓̄ is the merged model obtained with scaling matrices St 2 Rd⇥d for t = 0, 1, . . . , T . Since the
dimension d is often large, simple choices of St are used in practice. The simplest one is the
arithmetic mean (AM) or its weighted version (WAM; Wortsman et al., 2022b;a):

✓̄AM =
1

T

TX

t=1

✓t, ✓̄WAM = ↵0✓LLM +
TX

t=1

↵t✓t, (1)

where ↵t � 0. For large models, different parameters have different scaling and it is better to take
this into account, for example, by using the Fisher matrix Ft:

✓̄FA =
TX

t=1

St✓t, where St = ↵tF̄
�1

Ft with F̄ =
TX

t=1

↵tFt, for all t � 1, (2)

giving rise to ‘Fisher Averaging’ (FA). We could similarly include S0 by using the Fisher F0 of
the LLM. In practice, to reduce the computation cost, we may only use the diagonal of the Fisher
estimated in an online fashion (Matena & Raffel, 2022). This is similar to strategies in continual
learning (Kirkpatrick et al., 2017) where the choice of Fisher is justified through Bayesian updating
Huszár (2018). However, such connections are not yet explored or exploited for model merging.

Using Fisher should improve things a bit but the extent of improvement is unclear. A recent work
by Jin et al. (2023) uses insights from linear models to justify some of these choices, but such
justification may not hold for nonlinear models. In general, it is also not clear how Fisher-averaging
takes care of the commonalities between the fine-tuning ✓t of the LLM ✓LLM. Should we include
F0 or not, and how should it be combined with the other Ft so as to avoid double counting of
information in the models? The current practice is to tune ↵t on a validation set which is one way
to make up for the errors, but this can quickly become expensive as T increases.

Recently, Ilharco et al. (2023) proposed to subtract the contribution of ✓LLM with the follow-
ing simple ‘task arithmetic’ (TA): ✓̄TA = ✓LLM +

PT
t=1 ↵t(✓t � ✓LLM). Subtracting ✓LLM

from ✓t should reduce double-counting the information, but adding Fisher-style scaling in this
scheme can be a bit tricky. A recent work by Daheim et al. (2023) proposes to use ✓̄FA1 =

2
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Model ✓ Toxicity Fluency Model Fluency Hallucination %
100·Avg. Num. Toxic PPL(#) BLEU (") Critic (#) 1-Q2 (#)

GPT2117M ✓LLM 11.2 15.4 % 24.9 FlanT5250M 17.3 27.5 11.7
TA 9.8 13.1 % 30.3 18.2 13.8 7.4
ours 9.6 (#0.2) 12.8 % (#0.3) 26.9 (#3.4) 18.2 (-) 12.8 (#1.0) 7.0 (#0.4)

GPT-J1.3B ✓LLM 11.9 16.6 % 12.6 FlanT5780M 18.4 31.5 12.8
TA 10.7 14.5 % 12.7 18.6 11.8 7.7
ours 10.2 (#0.5) 14.0 % (#0.5) 12.8 (#0.1) 18.0 (#0.6) 8.8 (#3.0) 5.0 (#2.7)

Table 4: Reducing gradient mismatch also improves removal of undesirable behaviour from LLMs.

also falls below the zero-shot baseline of the IMDB model. We further find that not averaging the
squared gradients performs better on average for both FA and our method, but for small datasets
(SST2) it can be beneficial to average the squared gradients to weight each dataset the same. An
important choice in our experiments for FA was how to lower-bound or add a small � to the Fishers
to prevent numerical instability. For instance, for Favg. we have found adding a small delta (e.g on
the order of 10�10) to perform multiple points better than clipping to a larger value, such as 10�6.
To summarize: 1) reducing gradient mismatch improves performance and 2) is crucial for correct
scaling to overcome the need for manual tuning of scales. Furthermore, 3) merging with increments
of ✓t � ✓LLM instead of just ✓t gives slight improvements and 4) so does scaling by Fisher.

4.4 EDITING LANGUAGE GENERATION MODELS BY REMOVING DATA

We study two settings for removing harmful examples from LLMs: removing data with halluci-
nations from dialogue models to improve their faithfulness, and removing toxic data. We first
replicate the set-up from Daheim et al. (2023) and train a dialogue model on Wizard-of-Wikipedia
(Dinan et al., 2019) which we then train further on synthetic data containing hallucinations using a
quadratic penalty. This model is subsequently used for removal from the first one. We found 1.0 to
be the best scaling factor for both merging functions. We evaluate faithfulness using a critic (Dziri
et al., 2022) and Q2 (Honovich et al., 2021), and fluency using BLEU (Papineni et al., 2002). Table 4
shows improvements in terms of both faithfulness metrics with no or minor degradation in BLEU
when compared to task arithmetic for two sizes of flanT5 (Chung et al., 2022). For unlearning tox-
icity, we use the set-up from Ilharco et al. (2023). We use GPT2 (Radford et al., 2019), and GPT-J
1.3B (Wang & Komatsuzaki, 2021) and fine-tune each model on the comments with toxicity score
� 0.8 from Civil Comments (Borkan et al., 2019). For both task arithmetic and our method we
introduce a scaling factor because initial experiments with ↵t = 1 showed degenerate generations.
Potentially, H0 is underestimated, as we can not run the squared gradient approximation on all train-
ing data because it is either unavailable or too computationally expensive; instead we estimate it on
WikiText103. We then prompt all models with “I don’t care if this is controversial” and a prompt
from RealToxicityPrompts (Gehman et al., 2020). Finally, we evaluate the toxicity using Detoxify
(Hanu & Unitary team, 2020), and perplexity on WikiText103 (Merity et al., 2017). We classify all
generations with score � 0.2 as toxic. Table 4 shows that our method reduces toxicity in comparison
to TA for both models and perplexity strongly for GPT2.

5 CONCLUSION

In this paper, we connect the error of the merged model to the gradient mismatch between the
individual models that are merged and the ‘target model’ that merging aims to recover. We use this
insight not only to propose new methods for model merging but also to understand existing ones.
We also show deep connections to Bayesian inference which point to new directions for further
improvements. Since the target model is not available during merging by definition, our proposed
merging method reduces the gradient mismatch by a second-order approximation and is therefore
tied to the uncertainty of the models, which determines their scaling. Our merging method shows
improvements over previously proposed methods, such as task arithmetic, averaging, and Fisher-
weighted averaging on CV and NLP tasks, both for task addition, where it reduces the gap to the
target model trained on all data, and removal, for example, for removing toxicity or hallucinations
from LLMs. Notably, the proposed method is much more robust to the choice of scaling factors as
scaling naturally appears in its derivation without the need for hyper-parameter tuning.
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Result: Our method improves performance and is less sensitive to hyperparameters.

Gradient mismatch correlates with test error Gradient mismatch and its approximation

1. Y. Shen*, N. Daheim*, B. Cong, P. Nickl, G.M. Marconi, C. Bazan, R. Yokota, I. Gurevych, D. Cremers, 
M.E. Khan, T. Möllenhoff. Variational Learning is Effective for Large Deep Networks. ICML, 2024. 

2. B. Cong, N. Daheim, Y. Shen, D. Cremers, R. Yokota, M.E. Khan, T. Möllenhoff. Variational Low-
Rank Adaptation using IVON. NeurIPS Workshop on Fine-Tuning in Modern ML (FITML), 2024.

Problem & Contribution [1]: Existing variational-learning algorithms do not work as 
well as Adam at large scale (e.g., GPT level) while also keeping the cost the same. We 
propose IVON that fixes this issue and obtains state-of-the-art results on GPT-2.

ResNet-50 on 
ImageNet

4. E. Guha, S. Natarajan, T. Möllenhoff, M. E. Khan, E. Ndiaye. Conformal Prediction via 
Regression-as-Classification. ICLR 2024.

Problem: Conformal Prediction (CP) 
aims to estimate uncertainty, but can be 
challenging to use for regression, 
especially with heteroskedastic, 
multimodal, or skewed distributions. 

Contribution: We circumvent these 
challenges by converting regression to a 
classification problem and then use CP 
for classification. This gives surprisingly 
good results on many practical problems.

RMSprop IVON

Code (just 2 lines modification)

Plug-and-Play code

IVON on GPT-2 (better perplexity than AdamW) IVON on ImageNet (better accuracy)

IVON obtained first position on 
NeurIPS 2023 challenge (the 

team won $3000)

IVON works well for LoRA finetuning on Llama 2 (7 billion parameters)

Code: pip install R2CCP (also available as part of TorchCP)
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Figure 1: The left panel illustrates our approach. We connect the error � of the merged model
✓merged to the gradient mismatch over losses ¯̀t and propose a new method that reduces the mismatch
by using the Hessian Ht and error �t of the individual models ✓t. The right panel shows an example
of adding datasets to RoBERTa trained on IMDB. We clearly see that reducing mismatch reduces
test error of task arithmetic (↵t = 1). We consider 5 datasets, indicated by a number on the markers.

2 MODEL MERGING BY PARAMETER AVERAGING

We consider merging multiple models that share the same architecture but are trained on different
datasets, for example, by fine-tuning a large pretrained model. We denote each of the T > 1 models
by its parameter vector ✓t 2 Rd. Throughout this section, we will use an LLM, denoted by ✓LLM,
but the results straightforwardly apply to other pretrained models. Given ✓LLM and different ✓t, our
goal is to understand the inaccuracies in existing parameter-averaging methods and improve them.

We focus on the following simple weighted-averaging scheme: ✓̄ = S0 ✓LLM +
PT

t=1 St ✓t, where
✓̄ is the merged model obtained with scaling matrices St 2 Rd⇥d for t = 0, 1, . . . , T . Since the
dimension d is often large, simple choices of St are used in practice. The simplest one is the
arithmetic mean (AM) or its weighted version (WAM; Wortsman et al., 2022b;a):

✓̄AM =
1

T

TX

t=1

✓t, ✓̄WAM = ↵0✓LLM +
TX

t=1

↵t✓t, (1)

where ↵t � 0. For large models, different parameters have different scaling and it is better to take
this into account, for example, by using the Fisher matrix Ft:

✓̄FA =
TX

t=1

St✓t, where St = ↵tF̄
�1

Ft with F̄ =
TX

t=1

↵tFt, for all t � 1, (2)

giving rise to ‘Fisher Averaging’ (FA). We could similarly include S0 by using the Fisher F0 of
the LLM. In practice, to reduce the computation cost, we may only use the diagonal of the Fisher
estimated in an online fashion (Matena & Raffel, 2022). This is similar to strategies in continual
learning (Kirkpatrick et al., 2017) where the choice of Fisher is justified through Bayesian updating
Huszár (2018). However, such connections are not yet explored or exploited for model merging.

Using Fisher should improve things a bit but the extent of improvement is unclear. A recent work
by Jin et al. (2023) uses insights from linear models to justify some of these choices, but such
justification may not hold for nonlinear models. In general, it is also not clear how Fisher-averaging
takes care of the commonalities between the fine-tuning ✓t of the LLM ✓LLM. Should we include
F0 or not, and how should it be combined with the other Ft so as to avoid double counting of
information in the models? The current practice is to tune ↵t on a validation set which is one way
to make up for the errors, but this can quickly become expensive as T increases.

Recently, Ilharco et al. (2023) proposed to subtract the contribution of ✓LLM with the follow-
ing simple ‘task arithmetic’ (TA): ✓̄TA = ✓LLM +

PT
t=1 ↵t(✓t � ✓LLM). Subtracting ✓LLM

from ✓t should reduce double-counting the information, but adding Fisher-style scaling in this
scheme can be a bit tricky. A recent work by Daheim et al. (2023) proposes to use ✓̄FA1 =

2


