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Overview and Goals

Goal: to design low-cost Al systems that can learn and improve continually

Standard Deep Learning Continual Lifelong Learning

throughout their lives, just like humans and animals. Currently, deep

learning requires a large amount of data which is costly, rigid, and cannot
quickly adapt. We aim to fix this with a new principle which Bayes-duality.

Summary for the year 2024 (paper number shown in green boxes)
1.

Problem & Contribution [1]: Existing variational-learning algorithms do not work as
well as Adam at large scale (e.g., GPT level) while also keeping the cost the same. We
propose IVON that fixes this issue and obtains state-of-the-art results on GPT-2.

IVON on GPT-2 (better perplexity than AdamW)
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We obtain state-of-the-art result at GPT-2 level with a new variational

algorithm cal
IVON also im
methods suc
. We propose new uncertainty-based methods to understand and
improve model-merging in Large Language Models (LLMs).

We propose new conformal prediction methods to address challenging
cases, such as, heteroscedastic, multimoda
We participated in a position paper to emphasize the importance of
Bayesian methods for large-scale Al based on deep learning.
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The memorable examples can be
reused later during training with the new
data. This avoids forgetting of the past.

Bayes-duality relates models parameters (left) to the data
examples (small dots at the right). The principle enables us to
identify a few memorable examples (big black circle).
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Model Merging

Problem: LLMs can be merged with finetuned models by a simple

0
parameter addition. This works surprisingly well, but why? 1+2

Contribution: We connect the inaccuracy of model merging to 91/' ‘\92
mismatch in the gradients. When gradient mismatch is small, T T
parameter addition works well. To reduce large gradient mismatch, P P
we propose a Hessian-based method to reduce the error. 1 2

IVON Plug-and-Play code

Gradient mismatch correlates with test error Gradient mismatch and its approximation
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IVON on ImageNet (better accuracy) Gradient mismatch
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deep learning, while acknowledging many of its challenges with and highlighting
new research addressing the obstacles.
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