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Overview and Goals
Goal: AI systems that can learn and improve continually throughout their lives, just like humans and animals. Currently, deep 
learning (DL) requires a large amount of data which is costly and rigid, leading to a system that is unable to quickly adapt. We
aim to fix this with a new learning paradigm based on Bayesian principles. 

Summary of our research highlights in the year 2022 (paper number shown in green boxes)
- We show a robust deep-learning method is related to Bayes and add uncertainty to it (top 75/5000 papers at ICLR2023)
- We extend the Bayesian learning rule using Lie-groups, simplifying gradient computations and eliminating retractions.
- We design a generally unimprovable procedure for relaxation time estimation in non-reversible Markov chains.
- We simplify momentum-based Riemannian optimization over positive-semi-definite matrix submanifold.
- We use low-rank matrix completion techniques to reconstruct partially-observed high-dimensional time series.
- Analysis of MMD estimation, Neural processes, A Dataset for African Languages, Deviation inequalities, and more …!

Deep Continual Learning

Standard Deep Learning

SAM as an Optimal Relaxation of Bayes The Lie-Group Bayesian Learning Rule

Estimation of Relaxation Time in Non-Reversible Markov Chains

Contribution #2: Our Bayesian-SAM improves 
accuracy over SGD (by 8%), SAM-Adam (by 10%), 
and Adam (by 22%), but also improves AUROC 
(for CIFAR-100 using ResNet-20 with 270K 
params).

Problem: Sharpness-Aware Minimization (SAM) by Foret et al. improve significantly 
over SGD but the reasons behind its success are unclear.

Solution: We show that SAM is equivalent to an optimal relaxation of Bayes obtained 
by using Fenchel biconjugate (left figure). SAM can be seen as “smoothing” the 
objective using a “posterior variance” and always upper-bounding Bayes (right).
Our paper [1] is among top-5% of all accepted papers (75 out of 5000 submissions)

1. Moellenhoff, Khan, SAM as an Optimal Relaxation of Bayes, ICLR 2023 (oral, notable top-5%)

Problem: Many popular algorithms can be derived from the Bayesian learning rule 
of Khan and Rue (2021) but the rule can be difficult to apply, e.g., gradients are 
difficult to compute, and steps can lead to invalid distributions (e.g., –ve variances).

2. Kiral, Moellenhoff, Khan, The Lie-Group Bayesian Learning Rule, AISTATS 2023.

Solution: We extend the rule by using Lie-groups which solves the above problems: 
gradients can always be obtained by reparameterizations, and steps always stay on 
the manifold. Fisher computation is also simplified and only need to be done once.
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Result: Reduces to the update [3] when applied to exp. fam. and linearized.

Conceptual algorithm: 

Multiplicative

Problem: Estimate the relaxation time of an unknown, ergodic, non-reversible Markov 
chain from a single trajectory of length 𝒎 started from an arbitrary state.

Application: This is useful in reinforcement learning, Markov Chain Monte Carlo 
diagnostics, and deriving generalization bounds with Markov-dependent data.

3. Wolfer and Kontorovich, Improved Estimation of Relaxation Time in Non-reversible Markov Chains, arXiv 2022.

Contributions: 
Ø Prove there exists an estimator          for         such that for any ergodic chain, when 

where      is the minimum stationary probability, it holds w.h.p. that                             . 
Upper bound matches known lower bounds, thus generally unimprovable.

Ø Design algorithm with fully empirical confidence intervals that decay in                     .                    

Other Works

Multiplicative Learning (nll=0.058)

Additive Learning (nll=0.083)

4. Lin, Duruisseaux, Leok, Nielsen, Khan, Schmidt, Practical Structured Riemannian Optimization 
with Momentum by using Generalized Normal Coordinates, NeurIPS 2022 Workshop on 
Symmetry and Geometry in Neural Representation

10. Tata, Gudur, Chennupati, Khan, Can calibration improve sample prioritization, NeurIPS 2022 
Workshop on Has It Trained Yet

7. Tailor, Khan, Nalisnick, Exploiting Inference Structure in Neural Processes, UAI 2022 Workshop on 
Tractable Probabilistic Modeling

Simplify momentum-based Riemannian optimization: We consider the specific case 
of a submanifold containing symmetric positive-definite matrices. The method uses a 
generalized version of local coordinates which “trivializes” the Fisher matrix.

Prioritization of minibatches: We give empirical support for the hypothesis that 
improving calibration can help in prioritizing minibatches during training.

Improving Neural Process: We improve test-time inference for Neural Processes by 
incorporating and exploiting graphical-model structure among context points.

8. Buzaaba with many others, MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity 
Recognition, EMNLP 2022

Name-Entity Recognition (NER) dataset for Sub-Saharan African languages: We create 
the largest human-annotated dataset called MasakhaNER 2.0, and analyze features 
that contribute to cross-lingual transfer, giving large gains for 0-shot learning.

6. Chérief-Abdellatif, Alquier, Finite Sample Properties of Parametric MMD Estimation: 
Robustness to Misspecification and Dependence, Bernoulli 2022

Finite sample properties of parametric MMD estimation: We tackle the problem of 
universal estimation using a minimum distance estimator based on Maximum Mean 
Discrepancy, and we show its robustness to both dependence and presence of 
outliers.

Deviation inequalities for stochastic approximation by averaging: We establish 
deviation inequalities for separately Lipschitz functions of Markov chains belonging to 
a certain class we define, and which includes models of stochastic approximation by 
averaging and non-averaging.
9. Fan, Alquier, Doukhan, Deviation inequalities for stochastic approximation by averaging,SPA 2022

High-dimensional time series completion: We use low-rank matrix completion 
techniques to reconstruct partially observed high-dimensional time series and show 
that periodicity or smoothness can even lead to faster rates than in the independent 
setting.
5. Alquier, Marie, Rosier, Tight risk bound for high dimensional time series completion, EJS 2022
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SAM as an Optimal Relaxation of Bayes

Model /
Data Method Accuracy "

(higher is better)
NLL #

(lower is better)
ECE #

(lower is better)
AUROC "

(higher is better)

MLP
MNIST

SGD 98.63(0.06) 0.044(0.0012) 0.0028(0.0007) 0.979(0.002)
SAM-SGD 98.82(0.03) 0.039(0.0005) 0.0031(0.0002) 0.978(0.003)
SWAG 98.65(0.04) 0.044(0.0002) 0.0028(0.0005) 0.976(0.003)
VOGN 98.54(0.03) 0.046(0.0008) 0.0033(0.0007) 0.980(0.002)

Adam 98.41(0.06) 0.050(0.0012) 0.0036(0.0007) 0.979(0.002)
SAM-Adam 98.58(0.03) 0.046(0.0009) 0.0044(0.0005) 0.980(0.002)

bSAM (ours) 98.78(0.06) 0.038(0.0011) 0.0024(0.0004) 0.982(0.001)

LeNet-5
FMNIST

SGD 91.37(0.27) 0.32(0.007) 0.0429(0.0015) 0.897(0.004)
SAM-SGD 91.95(0.17) 0.22(0.004) 0.0062(0.0007) 0.917(0.002)

SWAG 91.38(0.27) 0.31(0.005) 0.0397(0.0026) 0.901(0.005)
VOGN 91.24(0.25) 0.24(0.004) 0.0071(0.0012) 0.916(0.002)

Adam 91.14(0.25) 0.33(0.005) 0.0450(0.0008) 0.897(0.005)
SAM-Adam 91.66(0.19) 0.25(0.004) 0.0225(0.0026) 0.913(0.002)
bSAM (ours) 92.10(0.26) 0.22(0.005) 0.0066(0.0022) 0.920(0.002)

ResNet-20-FRN
CIFAR-10

SGD 86.55(0.35) 0.56(0.014) 0.0839(0.003) 0.878(0.005)
SAM-SGD 87.49(0.26) 0.49(0.019) 0.0710(0.003) 0.891(0.004)
SWAG 86.80(0.10) 0.53(0.017) 0.0774(0.001) 0.880(0.006)
VOGN 87.30(0.24) 0.38(0.004) 0.0315(0.003) 0.890(0.003)
Adam 80.85(0.98) 0.83(0.063) 0.1317(0.011) 0.820(0.013)
SAM-Adam 85.26(0.15) 0.46(0.007) 0.0228(0.002) 0.874(0.004)
bSAM (ours) 88.72(0.24) 0.34(0.005) 0.0163(0.002) 0.903(0.003)

ResNet-20-FRN
CIFAR-100

SGD 55.82(0.97) 1.91(0.025) 0.1695(0.005) 0.811(0.004)
SAM-SGD 58.58(0.59) 1.60(0.022) 0.0989(0.005) 0.827(0.003)
SWAG 56.53(0.40) 1.86(0.018) 0.1604(0.004) 0.814(0.004)
VOGN 59.83(0.75) 1.44(0.019) 0.0756(0.005) 0.830(0.002)
Adam 39.73(0.97) 2.29(0.045) 0.0295(0.018) 0.775(0.004)
SAM-Adam 53.25(0.80) 1.71(0.035) 0.0401(0.005) 0.818(0.005)
bSAM (ours) 62.64(0.33) 1.32(0.001) 0.0311(0.003) 0.841(0.004)

Table 1: Comparison without data augmentation. The results are averaged over 5 random seeds, with
standard deviation shown in the brackets. The best performance is shown in bold using statistical
significance. bSAM (gray row) gives either comparable or better performance than the rest.

Model /
Dataset Method Accuracy "

(higher is better)
NLL #

(lower is better)
ECE #

(lower is better)
AUROC "

(higher is better)

ResNet-20-FRN /
CIFAR-10

SGD 91.68(0.26) 0.29(0.008) 0.0397(0.002) 0.915(0.002)
SAM-SGD 92.29(0.39) 0.25(0.004) 0.0266(0.003) 0.920(0.003)
Adam 89.97(0.27) 0.41(0.021) 0.0610(0.003) 0.900(0.003)
SAM-Adam 91.57(0.21) 0.26(0.004) 0.0329(0.002) 0.918(0.001)
bSAM (ours) 92.16(0.16) 0.23(0.003) 0.0057(0.002) 0.925(0.001)

ResNet-20-FRN /
CIFAR-100

SGD 66.48(0.10) 1.20(0.007) 0.0524(0.004) 0.846(0.002)
SAM-SGD 67.27(0.22) 1.19(0.011) 0.0481(0.001) 0.848(0.002)
Adam 61.76(0.67) 1.66(0.049) 0.1582(0.006) 0.826(0.003)
SAM-Adam 65.34(0.32) 1.23(0.012) 0.0166(0.003) 0.847(0.002)
bSAM (ours) 68.22(0.44) 1.10(0.013) 0.0258(0.003) 0.857(0.004)

ResNet-20-FRN /
TinyImageNet

SGD 52.01(0.36) 1.98(0.007) 0.0330(0.002) 0.832(0.002)

SAM-SGD 52.25(0.26) 1.97(0.013) 0.0155(0.002) 0.827(0.005)
Adam 49.04(0.38) 2.14(0.024) 0.0502(0.004) 0.820(0.004)
SAM-Adam 51.17(0.45) 2.02(0.014) 0.0460(0.004) 0.828(0.004)
bSAM (ours) 52.90(0.35) 1.94(0.009) 0.0199(0.003) 0.831(0.001)

Table 2: Comparison with data augmentation. Similar to Table 1, the shaded row show that bSAM
consistently improves over the baselines and is the overall best method.

8

SAM as an Optimal Relaxation of Bayes

Model /
Data Method Accuracy "

(higher is better)
NLL #

(lower is better)
ECE #

(lower is better)
AUROC "

(higher is better)

MLP
MNIST

SGD 98.63(0.06) 0.044(0.0012) 0.0028(0.0007) 0.979(0.002)
SAM-SGD 98.82(0.03) 0.039(0.0005) 0.0031(0.0002) 0.978(0.003)
SWAG 98.65(0.04) 0.044(0.0002) 0.0028(0.0005) 0.976(0.003)
VOGN 98.54(0.03) 0.046(0.0008) 0.0033(0.0007) 0.980(0.002)

Adam 98.41(0.06) 0.050(0.0012) 0.0036(0.0007) 0.979(0.002)
SAM-Adam 98.58(0.03) 0.046(0.0009) 0.0044(0.0005) 0.980(0.002)

bSAM (ours) 98.78(0.06) 0.038(0.0011) 0.0024(0.0004) 0.982(0.001)

LeNet-5
FMNIST

SGD 91.37(0.27) 0.32(0.007) 0.0429(0.0015) 0.897(0.004)
SAM-SGD 91.95(0.17) 0.22(0.004) 0.0062(0.0007) 0.917(0.002)

SWAG 91.38(0.27) 0.31(0.005) 0.0397(0.0026) 0.901(0.005)
VOGN 91.24(0.25) 0.24(0.004) 0.0071(0.0012) 0.916(0.002)

Adam 91.14(0.25) 0.33(0.005) 0.0450(0.0008) 0.897(0.005)
SAM-Adam 91.66(0.19) 0.25(0.004) 0.0225(0.0026) 0.913(0.002)
bSAM (ours) 92.10(0.26) 0.22(0.005) 0.0066(0.0022) 0.920(0.002)

ResNet-20-FRN
CIFAR-10

SGD 86.55(0.35) 0.56(0.014) 0.0839(0.003) 0.878(0.005)
SAM-SGD 87.49(0.26) 0.49(0.019) 0.0710(0.003) 0.891(0.004)
SWAG 86.80(0.10) 0.53(0.017) 0.0774(0.001) 0.880(0.006)
VOGN 87.30(0.24) 0.38(0.004) 0.0315(0.003) 0.890(0.003)
Adam 80.85(0.98) 0.83(0.063) 0.1317(0.011) 0.820(0.013)
SAM-Adam 85.26(0.15) 0.46(0.007) 0.0228(0.002) 0.874(0.004)
bSAM (ours) 88.72(0.24) 0.34(0.005) 0.0163(0.002) 0.903(0.003)

ResNet-20-FRN
CIFAR-100

SGD 55.82(0.97) 1.91(0.025) 0.1695(0.005) 0.811(0.004)
SAM-SGD 58.58(0.59) 1.60(0.022) 0.0989(0.005) 0.827(0.003)
SWAG 56.53(0.40) 1.86(0.018) 0.1604(0.004) 0.814(0.004)
VOGN 59.83(0.75) 1.44(0.019) 0.0756(0.005) 0.830(0.002)
Adam 39.73(0.97) 2.29(0.045) 0.0295(0.018) 0.775(0.004)
SAM-Adam 53.25(0.80) 1.71(0.035) 0.0401(0.005) 0.818(0.005)
bSAM (ours) 62.64(0.33) 1.32(0.001) 0.0311(0.003) 0.841(0.004)

Table 1: Comparison without data augmentation. The results are averaged over 5 random seeds, with
standard deviation shown in the brackets. The best performance is shown in bold using statistical
significance. bSAM (gray row) gives either comparable or better performance than the rest.

Model /
Dataset Method Accuracy "

(higher is better)
NLL #

(lower is better)
ECE #

(lower is better)
AUROC "

(higher is better)

ResNet-20-FRN /
CIFAR-10

SGD 91.68(0.26) 0.29(0.008) 0.0397(0.002) 0.915(0.002)
SAM-SGD 92.29(0.39) 0.25(0.004) 0.0266(0.003) 0.920(0.003)
Adam 89.97(0.27) 0.41(0.021) 0.0610(0.003) 0.900(0.003)
SAM-Adam 91.57(0.21) 0.26(0.004) 0.0329(0.002) 0.918(0.001)
bSAM (ours) 92.16(0.16) 0.23(0.003) 0.0057(0.002) 0.925(0.001)

ResNet-20-FRN /
CIFAR-100

SGD 66.48(0.10) 1.20(0.007) 0.0524(0.004) 0.846(0.002)
SAM-SGD 67.27(0.22) 1.19(0.011) 0.0481(0.001) 0.848(0.002)
Adam 61.76(0.67) 1.66(0.049) 0.1582(0.006) 0.826(0.003)
SAM-Adam 65.34(0.32) 1.23(0.012) 0.0166(0.003) 0.847(0.002)
bSAM (ours) 68.22(0.44) 1.10(0.013) 0.0258(0.003) 0.857(0.004)

ResNet-20-FRN /
TinyImageNet

SGD 52.01(0.36) 1.98(0.007) 0.0330(0.002) 0.832(0.002)

SAM-SGD 52.25(0.26) 1.97(0.013) 0.0155(0.002) 0.827(0.005)
Adam 49.04(0.38) 2.14(0.024) 0.0502(0.004) 0.820(0.004)
SAM-Adam 51.17(0.45) 2.02(0.014) 0.0460(0.004) 0.828(0.004)
bSAM (ours) 52.90(0.35) 1.94(0.009) 0.0199(0.003) 0.831(0.001)

Table 2: Comparison with data augmentation. Similar to Table 1, the shaded row show that bSAM
consistently improves over the baselines and is the overall best method.

8

Accuracy AUROC
+8%

+22%
+10%
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Figure 1: Panel (a) highlights the main difference between SAM and Bayes. SAM uses max-loss
(the red dot), while Bayes uses expected-loss (the blue dot shows `(✓ + ✏) for an ✏ ⇠ N (✏ | 0,�2)).
Our main result in Theorem 2 connects the two by using the optimal convex relaxation (Fenchel
biconjugate) of the expected loss. It shows that the role of ⇢ and � are exactly the same, and a
SAM minimizer obtained for a fixed ⇢ can always be recovered from the relaxation for some �. An
example is shown in Panel (b) for a loss (gray line) with 3 local minima indicated by A, B, and C.
The expected loss is smoother (blue line) but the relaxation, which upper bounds it, is even smoother
(red line). Higher � give smoother objectives where sharp minima A and C slowly disappear. The
SAM minimizer is shown with a red star which matches the minimizer of the relaxation.

2 SAM AS AN OPTIMAL RELAXATION OF BAYES

In SAM, the training loss `(✓) is replaced by the maximum loss within a ball of radius ⇢ > 0 around
the parameter ✓ 2 ⇥ ⇢ RP , as shown below for an `2-regularized problem,

ESAM(✓; ⇢, �) = sup
k✏k⇢

`(✓ + ✏) +
�

2
k✓k2, (1)

with � > 0 as the regularization parameter. The use of ‘maximum’ above differs from Bayesian
strategies that use ‘expectation’, for example, the variational formulation by Zellner (1988),

L(q) = E✓⇠q [�`(✓)]� DKL(q(✓) k p(✓)), (2)
where q(✓) is the generalized posterior (Zhang, 1999; Catoni, 2007), p(✓) is the prior, and
DKL(· k ·) is the Kullback-Leibler divergence (KLD). For an isotropic Gaussian posterior q(✓) =
N (✓ |m,�2I) and prior p(✓) = N (✓ | 0, I/�), the objective with respect to the mean m becomes

EBayes(m;�, �) = E✏0⇠N (0,�2I) [`(m+ ✏0)] +
�

2
kmk2, (3)

which closely resembles Eq. 1, but with the maximum replaced by an expectation. The above
objective is obtained by simply plugging in the posterior and prior, then collecting the terms that
depend on m, and finally rewriting ✓ = m+ ✏0.

There are some resemblances between the two objectives which indicate that they might be con-
nected. For example, both use local neighborhoods: the isotropic Gaussian can be seen as a ‘softer’
version of the ‘hard-constrained’ ball used in SAM. The size of the neighborhood is decided by their
respective parameters (� or ⇢ in Fig. 1(a)). But, apart from these resemblances, are there any deeper
connections? Here, we answer this question.

We will show that Eq. 1 is equivalent to optimizing with respect to m an optimal convex relaxation
of Eq. 3 while keeping � fixed. See Theorem 2 where an equivalence is drawn between � and
⇢, revealing similarities between the mechanisms used in SAM and Bayes to favor flatter regions.
Fig. 1(b) shows an illustration where the relaxation is shown to upper bound the expected loss. We
will now describe the construction of the relaxation based on Fenchel biconjugates.

2.1 FROM EXPECTED-LOSS TO MAX-LOSS VIA FENCHEL BICONJUGATES

We use results from convex duality to connect expected-loss to max-loss. Our main result relies on
Fenchel conjugates (Hiriart-Urruty & Lemaréchal, 2001), also known as convex conjugates. Con-
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