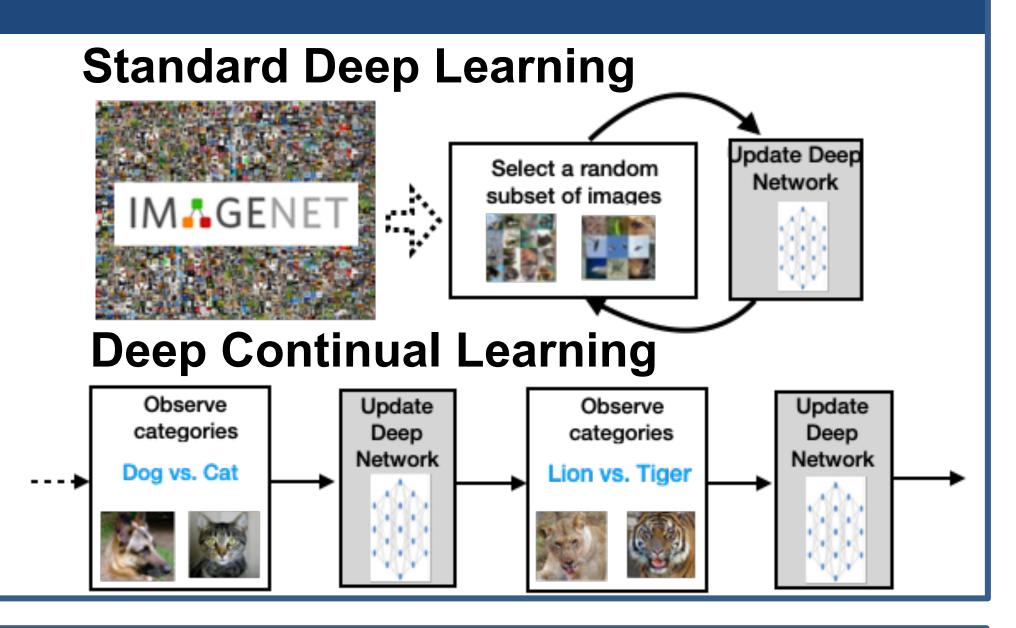
Approximate Bayesian Inference Team Mohammad Emtiyaz Khan 近似ベイズ推論チーム カーン エムティヤーズ

Overview and Goals

Goal: Al that can continue to learn and improve throughout their lives, just like humans and animals. Currently, deep learning (DL) requires a large amount of data which is costly and rigid (cannot quickly adapt). We aim to fix these issues with a new learning paradigm based on Bayesian principles.

Summary of our research in the years 2020-2021:

- A. Proposed Bayesian learning rule (BLR) yielding a wide-range of algorithms.
- B. New BLR variants for DL, one of which won the NeurIPS-2021 Approximate Inference challenge.
- C. Progress on adaptation and continual learning (FROMP, K-priors, Bayes-duality).
- D. New theoretical results for online Bayes
- E. Hyperparameter and architecture search using Bayesian methods.
- F. A new paper on AI for social good in Nature communications.



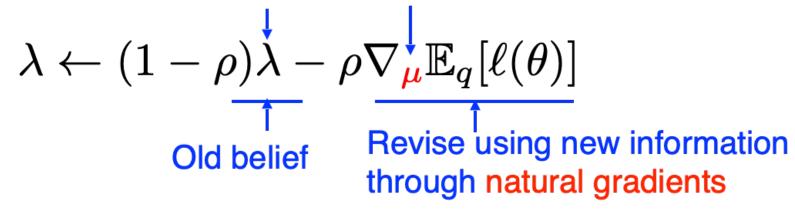
Bayesian Learning Rule (BLR)

Problem: Is there a common principle behind "successful" algorithms (e.g., those in DL)?

 $\min_{\theta} \ell(\theta) \quad \text{vs} \quad \min_{q \in \mathcal{Q}} \underbrace{\mathbb{E}_{q(\theta)}[\ell(\theta)] - \mathcal{H}(q)}_{\text{Generalized-Posterior approx.}} \text{Entropy}$

Solution: we propose the Bayesian Learning Rule [1]

Natural and Expectation parameters of q



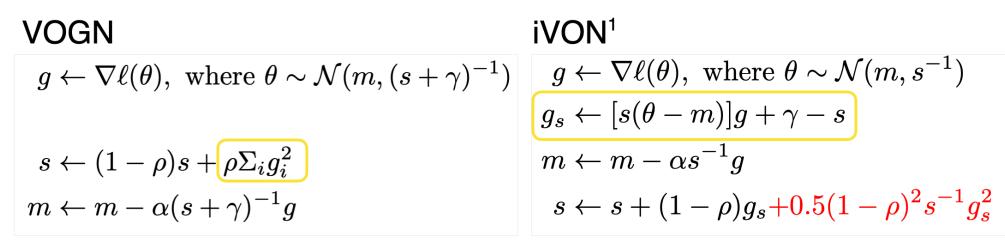
By choosing different approximations, we can derive a wide-variety of learning-algorithms. Better approximations lead to better algorithms.

Learning Algorithm	Posterior Approx.	Natural-Gradient Approx.	Sec.			
Optimization Algorithms						
Gradient Descent	Gaussian (fixed cov.)	Delta method	1.3			
Newton's method	Gaussian	"	1.3			
Multimodal optimization (New)	Mixture of Gaussians	"	3.2			
Deep-Learning Algorithms						
Stochastic Gradient Descent	Gaussian (fixed cov.)	Delta method, stochastic approx.	4.1			
RMSprop/Adam	Gaussian (diagonal cov.)	Delta method, stochastic approx.,	4.2			

1st Place in NeurIPS 2021 Challenge

Problem: Approximate the expensive, exact Bayesian posterior (computed over several weeks on 512 TPUs) but don't exceed ~10x the cost of standard training.

Solution: A BLR variant, called iVON [2], uses mixtureof-Gaussian posterior approximation. Won first prize! Team consisted of Thomas Möllenhoff, Yuesong Shen, Gian Maria Marconi, Peter Nickl, Emtiyaz Khan.



Team	Method	Rank (Light Track)	Rank (Ext. Track)	CIFAR Agree	CIFAR TVD	Med- MNIST Agree	Med- MNIST TVD	UCI- Gap W2
o RIKEN Team ABI	Bayesian Learning Rule	1	1.67	0.787	0.197	0.884	0.0994	-0.094
École Polytechnique	MultiSWAG	2.5	2.5	0.777	0.218	0.8905	0.0983	-0.166
University of Liège	Seq Anchored Ensembles	2.5	3	0.773	0.210	0.8745	0.1066	-0.115

More BLR variants:

• iVON [2] is proposed to ensure the steps of BLR

Continual Learning and Adaptation

Problem: Reduce catastrophic forgetting of the past. A popular method is to use quadratic weight regularizers. $q_{new}(\theta) = \min_{q \in \mathcal{Q}} \mathbb{E}_{q(\theta)}[\ell_{new}(\theta)] - \mathcal{H}(q) - \mathbb{E}_{q(\theta)}[\log q_{old}(\theta)]$ New data Weight-regularizer **Solution:** We show that functional regularization of "memorable past" $\mathbb{E}_{ ilde{q}_{ heta}(\mathbf{f})}[\log \widetilde{q}_{ heta_{old}}(\mathbf{f})]$ (FROMP) [5] gives better results $[\sigma(\mathbf{f}(\theta)) - \sigma(\mathbf{f}_{old})]^{\top} K_{old}^{-1}[\sigma(\mathbf{f}(\theta)) - \sigma(\mathbf{f}_{old})]$ Kernels weighs examples / Forces network-outputs according to their memorability to be similar Memorable examples of a CNN on MNIST . Turn neural networks into Gaussian process using Bayes 0000 00000 11111 000001 2222 2 Model fit 333 Principles **4**44 2. Lifelong continual learning with Bayes 555 66 7777 11 949 99999

In [6], we quantify "forgetting" in terms of past memory represented via principal components analysis

Theoretical	Results fo	r Online Bayes		Architecture Selection for Deep Networks	A Summary of Other Works
1. Khan and Rue, Th	ne Bayesian Lear	ning Rule <i>, arXiv, 2021</i>		using the Bayesian Learning Rule, ICML 2020	7. Khan & Swaroop, Knowledge-Adaptation Priors, NeurIPS 2021
Non-Conjugate VI (New)	Mixture of Exp-family	None	5.4	. Meng, Bachman, Khan, Training Binary Neural Networks	NTK Overlap Matrix, AlStats 2021
Non-Conjugate VMP		"	5.3	gradient descent using local parameterizations, ICML 2021	Theoretical Analysis of Catastrophic Forgetting through the
VMP	"	$ \rho_t = 1 $ for all nodes	5.3	<i>Lin, Nielsen, Khan, Schmidt,</i> Tractable structured natural-	6. Doan, Abbana Bennani, Mazoure, Rabusseau, Alquier, A
Stochastic VI (SVI)	Exp-family (mean-field)	-	5.3 –	in the Batesian Learning Rule, <i>ICML 2020</i>	Past, NeurIPS 2020
Laplace's method Expectation-Maximization	Gaussian Exp-Family + Gaussian	Delta method Delta method for the parameters	4.4 5.2 2	. Lin, Schmidt, Khan, Handling the Positive-Definite Constraint	Deep Learning by Functional Regularisation of Memorable
Conjugate Bayes	Exp-family	0 10	5.1	Networks which recovers the STE algorithm	5. Pan, Swaroop, Immer, Eschenhagen, Turner, Khan, Continual
Appre	oximate Bayesian Infere	nce Algorithms			$\mathcal{F}(\mathcal{O}) = \mathcal{F} \boxtimes \mathcal{G}(\mathcal{O} \mathcal{O} \otimes \mathcal{O}) + \mathbb{I} \boxtimes \mathcal{J}(\mathcal{O} \otimes \mathcal{O} \otimes \mathcal{O})$
BayesBiNN (New)	Bernoulli	Remove delta method from STE	4.5	BayesBiNN [4] is a BLR variant for Binary Neural	$\mathcal{K}(\theta) = \tau \mathbb{D}_{\theta}(\theta \ \theta_{\text{old}}) + \mathbb{D}_{f}(\mathbf{f}(\theta) \ \mathbf{f}(\theta_{\text{old}}))$
Variational OGN (New)	((Remove delta method from OGN	4.4	Lie-Group structures.	Weight-space Function-space
Online Gauss-Newton (OGN)	Gaussian (diagonal cov.)	Gauss-Newton Hessian approx. in Adam & no square-root scaling	4.4	recovering LBFGS/DFP style updates). This work uses	methods faithfully reconstruct the gradient of the past.
STE	Bernoulli	Delta method, stochastic approx.	4.5	covariances allow low-rank and sparse structures (eg,	
Dropout	Mixture of Gaussians	Delta method, stochastic approx., responsibility approx.	4.3 C	New generalizations in [3] for "structured"	unify such adaptation methods. We show that these
		Hessian approx., square-root scal- ing, slow-moving scale vectors		always lead to positive covariances.	In [7], we present a generalization called K-priors to
RMSprop/Adam	Gaussian (diagonal cov.)	Delta method, stochastic approx.,	4.2		represented via principal components analysis.

 $\rho^{t} = \underset{\rho \in \mathcal{P}(\Theta)}{\operatorname{argmin}} \left\{ \sum_{s=1}^{t-1} \mathbb{E}_{\theta \sim \rho} [\ell_{s}(\theta)] + \frac{\operatorname{KL}(\rho || \pi)}{\eta} \right\}$

Problem: Theoretical analysis for online Bayesian learning hold under restrictive conditions.

Solution: We propose to relax these conditions, by using a generalize online Bayesian methods where arbitrary divergences can be used (instead of KL) [8]

Problem: Existing methods require validation data to select architecture and hyperparameters.
Solution: A method based on marginal likelihood using only training data. Uses Laplace approximation[9.10] with scalable Hessian approx (eg, KFAC).

 $\log p(\mathcal{D} \mid \mathcal{M}) \approx \underbrace{\log p(\mathcal{D} \mid \theta_*, \mathcal{M})}_{\text{Training data fit}} + \underbrace{\log p(\theta_* \mid \mathcal{M}) - \frac{1}{2} \log \left| \frac{1}{2\pi} \mathbf{H}_{\theta_*} \right|}_{\text{complexity penalty}}$

Gaussian Process: Using BLR, we derive a fast algorithm for state-space GP [11]. We also show that a dual parameterization useful for sparse GPs [12]. We derive a sparse representation using subset of data [13]

11. Chang, Adam, Khan, Solin, Dual Parameterization of Sparse Variational Gaussian Processes, ICML 2021

12. Chang, Wilkinson, Khan, Solin, Fast Variational Learning in State-Space Gaussian Process Models, MLSP, 2020

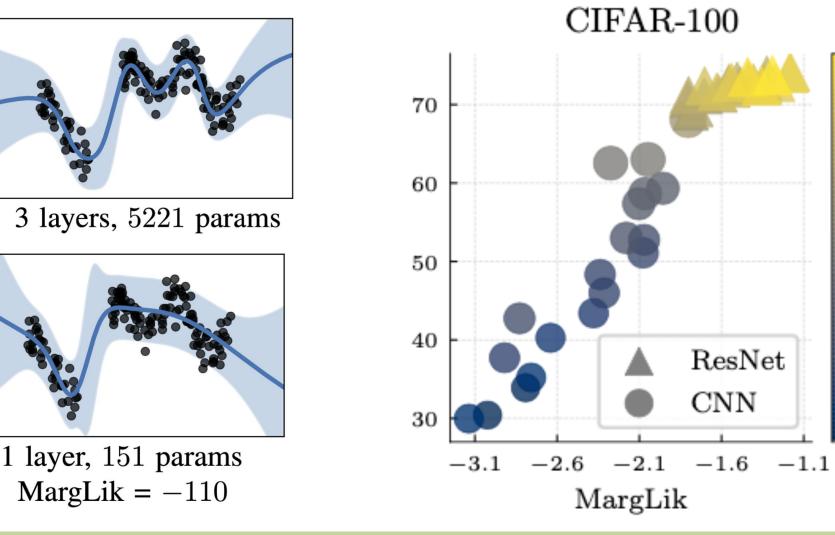
 $\rho^{t} = \operatorname*{argmin}_{\rho \in \mathcal{P}(\Theta)} \left\{ \sum_{s=1}^{t-1} \mathbb{E}_{\theta \sim \rho} [\ell_{s}(\theta)] + \frac{D_{\phi}(\rho || \pi)}{n} \right\}$

We derive an explicit formula for the updates which we call generalized Bayes rule.

 $\rho^{t}(\mathrm{d}\theta) = \nabla \tilde{\phi}^{*} \left(\lambda_{t} - \eta \sum_{s=1}^{t-1} \ell_{s}(\theta)\right) \pi(\mathrm{d}\theta)$

We prove a regret bound that holds for **below the usual bounded setting** (less restrictive).

8. Alquier, Non-exponentially Weighted Aggregation: Regret Bounds for Unbounded Loss Functions, ICML 2021 Larger models, which give better test error, also generally have higher marginal likelihoods.



↓ 10⁷

 10^{6}

 10^{5}

 10^{4}

 Immer, Bauer, Fortuin, Ratsch, Khan, Scalable marginal likelihood for model selection in deep learning, ICML 2021
 Immer, Korpeza, Bauer, Improving predictions of Bayesian neural networks via local linearization, Aistats 2021 13. Jain, PK, Khan, Subset-of-Data Variational Inference for Deep Gaussian-Process Regression, UAI 2021

Reinforcement Learning: We propose a replacement of "target networks" by functional regularization [14]. In [15], we propose imitation learning for diverse kinds of feedback, appropriately re-weighting them.

14. Piche, Thomas, Marino, Marconi, Pal, Khan., Beyond Target Networks: Improving Deep Q-learning with Functional Regularization, arXiv 2021

15. Tangkaratt, Han, Khan, Sugiyama, VILD: Variational Imitation Learning with Diverse-quality Demonstrations, ICML 2020

Al for Social Good: We outline a few guidelines on how to align Al systems for social good applications [16].

16. Tomasev et al., AI for Social Good: Unlocking the Opportunity for Positive Impact, *Nature communications 2020*