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Problem: Existing methods require validation data to 
select architecture and hyperparameters.
Solution: A method based on marginal likelihood using 
only training data. Uses Laplace approximation[9.10] with 
scalable Hessian approx (eg, KFAC).

Architecture Selection for Deep Networks

Overview and Goals

A Summary of Other WorksTheoretical Results for Online Bayes

Problem: Theoretical analysis for online Bayesian
learning hold under restrictive conditions.

Solution: We propose to relax these conditions, by
using a generalize online Bayesian methods where
arbitrary divergences can be used (instead of KL) [8]

We prove a regret bound that holds for below the
usual bounded setting (less restrictive).

We derive an explicit formula for the updates
which we call generalized Bayes rule.

Goal: AI that can continue to learn and improve throughout their lives, just like humans and animals. Currently, deep 
learning (DL) requires a large amount of data which is costly and rigid (cannot quickly adapt). We aim to fix these issues 
with a new learning paradigm based on Bayesian principles.

Summary of our research in the years 2020-2021:
A. Proposed Bayesian learning rule (BLR) yielding a wide-range of algorithms. 
B. New BLR variants for DL, one of which won the NeurIPS-2021 Approximate Inference challenge. 
C. Progress on adaptation and continual learning (FROMP, K-priors, Bayes-duality).
D. New theoretical results for online Bayes 
E. Hyperparameter and architecture search using Bayesian methods.
F. A new paper on AI for social good in Nature communications.

Deep Continual Learning

Standard Deep Learning

Continual Learning and Adaptation1st Place in NeurIPS 2021 ChallengeBayesian Learning Rule (BLR)
Problem:  Approximate the expensive, exact Bayesian 
posterior (computed over several weeks on 512 TPUs) 
but don’t exceed ~10x the cost of standard training.

Solution: A BLR variant, called iVON [2], uses mixture-
of-Gaussian posterior approximation. Won first prize! 
Team consisted of Thomas Möllenhoff, Yuesong Shen, 
Gian Maria Marconi, Peter Nickl, Emtiyaz Khan.
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Problem: Is there a common principle behind 
“successful” algorithms (e.g., those in DL)?

Solution: we propose the Bayesian Learning Rule [1]

Table 1: A summary of learning algorithms derived from the BLR. Each algorithm is derived through
specific approximations of the posterior and natural-gradient. New algorithms are marked with “(New)”.
Abbreviations: cov. ! covariance, STE ! Straight-Through-Estimator, VI ! Variational Inference,
VMP ! Variational Message Passing.

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.

Optimization Algorithms

Gradient Descent Gaussian (fixed cov.) Delta method 1.3

Newton’s method Gaussian —–“—– 1.3

Multimodal optimization (New) Mixture of Gaussians —–“—– 3.2

Deep-Learning Algorithms

Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1

RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx.,
Hessian approx., square-root scal-
ing, slow-moving scale vectors

4.2

Dropout Mixture of Gaussians Delta method, stochastic approx.,
responsibility approx.

4.3

STE Bernoulli Delta method, stochastic approx. 4.5

Online Gauss-Newton (OGN)
(New)

Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in
Adam & no square-root scaling

4.4

Variational OGN (New) —–“—– Remove delta method from OGN 4.4

BayesBiNN (New) Bernoulli Remove delta method from STE 4.5

Approximate Bayesian Inference Algorithms

Conjugate Bayes Exp-family Set learning rate ⇢t = 1 5.1

Laplace’s method Gaussian Delta method 4.4

Expectation-Maximization Exp-Family + Gaussian Delta method for the parameters 5.2

Stochastic VI (SVI) Exp-family (mean-field) Stochastic approx., local ⇢t = 1 5.3

VMP —–“—– ⇢t = 1 for all nodes 5.3

Non-Conjugate VMP —–“—– —–“—– 5.3

Non-Conjugate VI (New) Mixture of Exp-family None 5.4

2.1 Bayesian learning rule as natural-gradient descent

Given the objective L(�) = Eq[¯̀(✓)+log q(✓)] in Eq. 2, the classical gradient-descent algorithm performs
the following update:

�t+1  �t � ⇢tr�L(�t). (15)
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By choosing different approximations, we can 
derive a wide-variety of learning-algorithms. Better 
approximations lead to better algorithms.
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More BLR variants:
o iVON [2] is proposed to ensure the steps of BLR 

always lead to positive covariances.
o New generalizations in [3] for “structured” 

covariances allow low-rank and sparse structures (eg, 
recovering LBFGS/DFP style updates). This work uses 
Lie-Group structures.

o BayesBiNN [4] is a BLR variant for Binary Neural 
Networks which recovers the STE algorithm 5. Pan, Swaroop, Immer, Eschenhagen, Turner, Khan, Continual 

Deep Learning by Functional Regularisation of Memorable 
Past, NeurIPS 2020
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Problem:  Reduce catastrophic forgetting of the past. A 
popular method is to use quadratic weight regularizers.
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Gaussian Process: Using BLR, we derive a fast 
algorithm for state-space GP [11]. We also show that a 
dual parameterization useful for sparse GPs [12]. We 
derive a sparse representation using subset of data [13]

Reinforcement Learning: We propose a replacement 
of “target networks” by functional regularization [14]. 
In [15], we propose imitation learning for diverse kinds 
of feedback, appropriately re-weighting them.

AI for Social Good: We outline a few guidelines on how 
to align AI systems for social good applications [16].

Larger models, which give better test error, also 
generally have higher marginal likelihoods.

Solution: We show that functional 
regularization of “memorable past” 
(FROMP) [5] gives better results

≈

In [6], we quantify “forgetting” in terms of past memory 
represented via principal components analysis. 
In [7], we present a generalization called K-priors to 
unify such adaptation methods. We show that these 
methods faithfully reconstruct the gradient of the past.


