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Overview and Goals

Goal: Al that can continue to learn and improve throughout their lives, just like humans and animals. Currently, deep
learning (DL) requires a large amount of data which is costly and rigid (cannot quickly adapt). We aim to fix these issues
with a new learning paradigm based on Bayesian principles.

Summary of our research in the years 2020-2021:

Proposed Bayesian learning rule (BLR) yielding a wide-range of algorithms.

New BLR variants for DL, one of which won the NeurlPS-2021 Approximate Inference challenge.
Progress on adaptation and continual learning (FROMP, K-priors, Bayes-duality).

New theoretical results for online Bayes

Hyperparameter and architecture search using Bayesian methods.

A new paper on Al for social good in Nature communications.
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Bayesian Learning Rule (BLR) 1st Place in NeurlIPS 2021 Challenge

Problem: Is there a common principle behind Problem: Approximate the expensive, exact Bayesian
“successful” algorithms (e.g., those in DL)? posterior (computed over several weeks on 512 TPUs)

but don’t exceed ~10x the cost of standard training.

min (0) vs Erélg Cq(0)£(0)) — H(q) Entropy

of-Gaussian posterior approximation. Won first prize!
Team consisted of Thomas Mollenhoff, Yuesong Shen,

Solution: we propose the Bayesian Learning Rule [1]

Continual Learning and Adaptation

Problem: Reduce catastrophic forgetting of the past. A
popular method is to use quadratic weight regularizers.
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Solution: We show that functional
regularization of “memorable past”
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Architecture Selection for Deep Networks

t—1 Problem: Existing methods require validation data to
pt = argmin Z o~ pls(0)] select architecture and hyperparameters.
pEP(O) | =1 Solution: A method based on marginal likelihood using
only training data. Uses Laplace approximation[9.10] with
scalable Hessian approx (eg, KFAC).

Problem: Theoretical analysis for online Bayesian

A Summary of Other Works

Gaussian Process: Using BLR, we derive a fast
algorithm for state-space GP [11]. We also show that a
dual parameterization useful for sparse GPs [12]. We
derive a sparse representation using subset of data [13]

learning hold under restrictive conditions. 11. Chang, Adam, Khan, Solin, Dual Parameterization of Sparse
Variational Gaussian Processes, ICML 2021
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Solution: We propose to relax these conditions, by logp(D | M) = logp(DlO*,Mz—l— log p(0. | M) — o log| 5 —Ho.

using a generalize online Bayesian methods where Training data fit complexity penalty
arbitrary divergences can be used (instead of KL) [8]

Larger models, which give better test error, also

generally have higher marginal likelihoods.
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We derive an explicit formula for the updates
which we call generalized Bayes rule.
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We prove a regret bound that holds for below the MargLik = —110 MargLik

usual bounded setting (less restrictive). 9. Immer, Bauer, Fortuin, Ratsch, Khan, Scalable marginal
likelihood for model selection in deep learning, ICML 2021
8. Alquier, Non-exponentially Weighted Aggregation: Regret 10. Immer, Korpeza, Bauer, Improving predictions of Bayesian
Bounds for Unbounded Loss Functions, ICML 2021 neural networks via local linearization, Aistats 2021

2m 7| 12. Chang, Wilkinson, Khan, Solin, Fast Variational Learning in

State-Space Gaussian Process Models, MLSP, 2020

13. Jain, PK, Khan, Subset-of-Data Variational Inference for Deep

Gaussian-Process Regression, UAI 2021

Reinforcement Learning: We propose a replacement
of “target networks” by functional regularization [14].
In [15], we propose imitation learning for diverse kinds
of feedback, appropriately re-weighting them.

14. Piche, Thomas, Marino, Marconi, Pal, Khan., Beyond Target
Networks: Improving Deep Q-learning with Functional
Regularization, arXiv 2021

15. Tangkaratt, Han, Khan, Sugiyama, VILD: Variational Imitation
Learning with Diverse-quality Demonstrations, ICML 2020

Al for Social Good: We outline a few guidelines on how
to align Al systems for social good applications [16].

16. Tomasev et al., Al for Social Good: Unlocking the Opportunity
for Positive Impact, Nature communications 2020




