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Goals and Challenges

Long-Term Goal: To discover fundamental principles of learning, and design Al systems
that continue to learn and improve throughout their life (like humans)

Living beings can learn throughout their life from small chunks of data in a non-stationary
world, but deep learning requires a large amount of data from a stationary world. Our
current research focuses on reducing this gap.

Main Idea: \We use Bayesian principles to enable human-like learning of deep networks.

- New methods for uncertainty estimation in deep networks
- Convert deep networks to Gaussian process to use them as prior for life-long learning.

From Deep Neural Networks to Gaussian Processes

Using Gaussian posterior approximations, we can convert Neural
network to Gaussian processes (GP). This enables us to use

deep networks as functional priors.
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Standard Deep Learning
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Deep Continual Learning
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Uncertainty Estimation for Large Deep Networks

* A new scalable algorithm, called VOGN, to estimate uncertainty
for large deep-learning problems.

* For the first time, we can train ResNet-18 on ImageNet with 128
GPUs. We achieve similar performance to Adam/SGD in about
the same number of epochs while preserving the benefits of
Bayesian principles:

« predictive probabilities are well-calibrated
uncertainties on out-of-distribution data are improved
* continual-learning performance is boosted
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Approximate Inference Turns Deep Networks info Gaussian Processes. Khan ME, Immer A,

Abedi E, Korzepa M (NeurlPS 2019).

A New Bayesian Learning Rule for
Mixture of Exponential Family

 Bayesian Learning rule is a general
learning rule from which many
learning-algorithms can be derived

* Deep learning (SGD and Adam)

« [east-squares, Kalman filters etc.

* And many more..

* We extended the application of rule to
mixture of exponential family, enabling
us to derive, e.g., an ensemble
Newton method.

Fast and Simple Natural-Gradient Variational Inference with
Mixture of Exponential-family Approximations. Lin W, Khan
ME, Schmidt M (ICML 2019).

Algorithm Distributed VOGN

1. repeat

2: Sample a minibatch M of size M.

3: Split M into each GPU (local minibatch M yc).
4: for each GPU in parallel do

5. fork=12,..., K (# MC samples) do
6:  Sample weight wk) ~ g(w).

7 Compute gradient gEK)Vi € M ocal

8

~ 1 (k)
Ok < W QieMpyy Ii

9: end for

10: g« > r  8candh « L5 hy

11: end for

12: AlIReduce (aggregate) §, h among all GPUs.
13: m« Bm+(§+0p)ands < (1 — 762)s + Aah.
14: p+ p—om/(s+0).

" k
and hy < 4 X, (9)79)2 .

15: until stopping criterion is met =0

Bayesian Uncertainty Estimation in Image Segmentation

Segmentation (left) and its predictive entropy (right) on Cityscapes dataset

Practical Deep Learning with Bayesian Principles. Osawa K, Swaroop S, Jain A, Eschenhagen R,

Turner RE, Yokota R, Khan ME (NeurlPS 2019).

Inference Networks for Gaussian-

Process Models

This work uses neural networks to
approximate the posterior distribution
of Gaussian process models.

The main idea is to use a "functional’
mirror descent algorithm.

The updates can be approximated
using a neural networks as the
posterior distribution.

Scalable Training of Inference Networks for Gaussian-
Process Models. Shi J, Khan ME, Zhu J (ICML 2019).

A Generalization Bound for Online

Variational Inference

This work derives new bounds for
methods that perform online
variational inference.

We considers a variety of such
algorithms and showed that the
generalization error is bounded,
even though each step of the
algorithm is approximate.

Best paper award at ACML 2019.

A Generalization Bound For Online Variational Inference.
Cherief-Abdellatif, BE, Alquier, P and Khan, ME (ACML
2019).
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