Goal: To design Al that can continually learn using Bayesian principles.

Examples: Uncertainty: Knowing how much we don’t know, is useful to design

Robots that can understand and reason about their environments.
* Methods that improve performance of deep-learning methods.

Challenge: Computation of the posterior distribution is difficult

Main Idea: Approximate integration by using optimization, and design simple

algorithms that can be implemented within existing deep learning frameworks
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Fast and Simple Algorithms for Variational Inference

Variational Inference
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Example: Linear Regression
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VI with Natural-Gradient Descent

Sato 2001, Honkela et al. 2010, Hoffman et.al. 2013

NGD: )\ < )\ —+ /O‘F()\)_lvAﬁl Natural Gradient

|
Fisher Information Matrix (FIM)

=Ky, |Vioga(6)Vioga(0) "

Fast convergence due to optimization in
Riemannian manifold (not Euclidean space).
But requires additional computations.

* Can we simplify/reduce this computation?

Bayesian Neural Network
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Stochastic, Low-Rank, Approximate,
Natural-Gradient (SLANG)

NeurlPS 2018

* Low-rank + diagonal covariance matrix.
* SLANG is linear in D!

Low-Rank + diagonal
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Expectation Parameters
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For Gaussians, it’'s mean and correlation matrix
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NGD: A < A+ pV L

MLE vs NGD-VI

RMSprop for MLE NGD for mean-field VI
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SLANG is Faster than GD

Classification on USPS with BNNs
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Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam, (ICML 2018), Khan, Nielsen, Tangkaratt, Lin, Gal, and Srivastava.
SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient, (NeurlPS 2018), Mishkin, Kunstner, Nielsen,
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