

Approximate Bayesian Inference Team Mohammad Emtiyaz Khan

Goals and Challenges

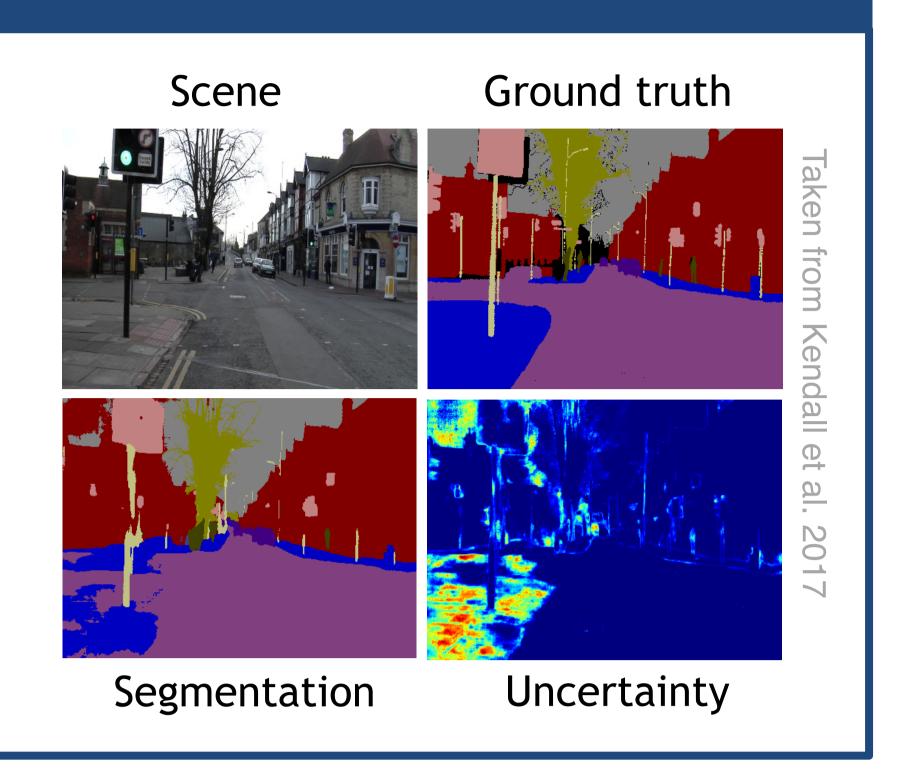
Goal: To design AI that can continually learn using Bayesian principles.

Examples: Uncertainty: Knowing how much we don't know, is useful to design

- Robots that can understand and reason about their environments.
- Methods that improve performance of deep-learning methods.

Challenge: Computation of the posterior distribution is difficult

Main Idea: Approximate integration by using optimization, and design simple algorithms that can be implemented within existing deep learning frameworks



Fast and Simple Algorithms for Variational Inference

Variational Inference

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta} \text{ Intractable integral}$$
 Variational Approximation
$$\approx q_{\lambda}(\theta) = \text{ExpFamily}(\lambda)$$
 Natural parameters

Maximize the Evidence Lower Bound (ELBO):

$$\max_{\lambda} \mathcal{L}(\lambda) := \mathbb{E}_{q_{\lambda}} \Big[\log p(\mathcal{D}, \theta) - \log q_{\lambda}(\theta) \Big]$$

Gradient descent (GD): $\lambda \leftarrow \lambda + \rho \nabla_{\lambda} \mathcal{L}$

VI with Natural-Gradient Descent

Sato 2001, Honkela et al. 2010, Hoffman et.al. 2013

NGD:
$$\lambda \leftarrow \lambda + \rho F(\lambda)^{-1} \nabla_{\lambda} \mathcal{L}$$
 Natural Gradient

Fisher Information Matrix (FIM)

 $F(\lambda) := \mathbb{E}_{q_{\lambda}} \left[\nabla \log q_{\lambda}(\theta) \nabla \log q_{\lambda}(\theta)^{\top} \right]$

- Fast convergence due to optimization in Riemannian manifold (not Euclidean space).
- But requires additional computations.
- Can we simplify/reduce this computation?

Expectation Parameters

 $\mu := \mathbb{E}_{q_{\lambda}}[\phi(\theta)]$ Expectation/moment/ mean parameters

For Gaussians, it's mean and correlation matrix $\mathbb{E}_{q_{\lambda}}[\theta] = m$ $\mathbb{E}_{q_{\lambda}}[\theta\theta^{\top}] = mm^{\top} + V$

A key relationship: $F(\lambda)^{-1} \nabla_{\lambda} \mathcal{L} = \nabla_{\mu} \mathcal{L}$ natural parameter parameter

NGD: $\lambda \leftarrow \lambda + \rho \nabla_{\mu} \mathcal{L}$

Example: Linear Regression

$$q_{\lambda}(\theta) := \mathcal{N}(m, V)$$

$$\mathbb{E}_{q} \begin{bmatrix} (y - X\theta)^{\top} (y - X\theta) + \gamma \theta^{\top} \theta & -\log q_{\lambda}(\theta) \end{bmatrix}$$

$$-\mathbb{E}_{q_{\lambda}}[\theta]^{\top} X^{\top} y + \operatorname{trace} \left[X^{\top} X \mathbb{E}_{q_{\lambda}}[\theta \theta^{\top}] \right]$$

$$\nabla_{\mathbb{E}_{q_{\lambda}}}[\theta] = \begin{bmatrix} -X^{\top} y & + 0 & -V^{-1} m \\ X^{\top} X & + \gamma I & -V^{-1} \end{bmatrix}$$

$$m \leftarrow (1 - \rho) m - \rho \left[X^{\top} X + \gamma I \right]^{-1} X^{\top} y$$

Bayesian Neural Network

$$\mathbb{E}_q \left(\sum_{i=1}^{N} \frac{\text{likelihood}}{\log p(y_i|f_{\theta}(x_i))} + \gamma \theta^{\top} \theta - \log q_{\lambda}(\theta) \right)$$

$$m \leftarrow m - \beta (S + \gamma I)^{-1} [g_i(\theta) + \gamma m]$$

$$S \leftarrow (1 - \beta)S + \beta H_i(\theta) \xrightarrow{\text{Back-propagated gradient \& Hessian}}$$

$$\theta \sim q_{\lambda}(\theta), \qquad g_i(\theta) := -\nabla_{\theta} \log p(y_i | f_{\theta}(x_i)),$$

$$V^{-1} \leftarrow S + \gamma I, \qquad H_i(\theta) := -\nabla_{\theta}^2 \log p(y_i | f_{\theta}(x_i))$$

MLE vs NGD-VI

RMSprop for MLE

NGD for mean-field VI $\theta \leftarrow \mu + \epsilon$, where $\epsilon \sim \mathcal{N}(0, Ns + \lambda)$

$$g \leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i}|\theta)$$

$$s \leftarrow (1-\beta)s + \beta g^{2}$$

$$\mu \leftarrow \mu + \alpha \frac{g}{\sqrt{s} + \delta}$$

$$g \leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i}|\theta)$$

$$s \leftarrow (1-\beta)s + \beta \frac{1}{M} \sum_{i} \left[\nabla \theta \log p(\mathcal{D}_{i}|\theta)\right]$$

$$\mu \leftarrow \mu + \alpha \frac{g}{\sqrt{s} + \delta}$$

$$\mu \leftarrow \mu + \alpha \frac{g + \lambda \mu/N}{s + \lambda/N}$$

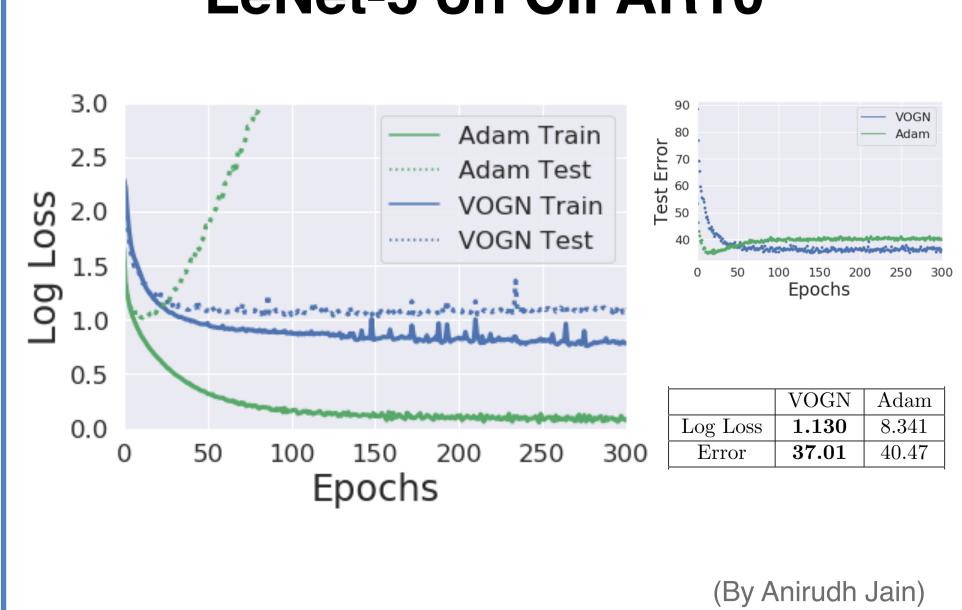
 $s \leftarrow (1 - \beta)s + \beta \frac{1}{M} \sum_{i=1}^{N} \left[\nabla_{\theta} \log p(\mathcal{D}_{i}|\theta) \right]^{2}$ $\mu \leftarrow \mu + \alpha \frac{g + \lambda \mu / N}{s + \lambda / N}$

Variational Online Gauss-Newton (VOGN)

 $s \leftarrow (1 - \beta)s + \beta \frac{1}{M} \sum \nabla_{\theta\theta}^2 \log p(\mathcal{D}_i|\theta)$

Variational RMSprop (Vprop) $s \leftarrow (1 - \beta)s + \beta g^2$

LeNet-5 on CIFAR10



Stochastic, Low-Rank, Approximate, **Natural-Gradient (SLANG)**

- Low-rank + diagonal covariance matrix.
- SLANG is linear in D!

$$m \leftarrow m - \rho \big[U U^\top + D \big]^{-1} [g_i + \gamma m]$$

 $(1-\beta)S + \beta H_i(\theta)$ $D \times L \quad L \times D$ gradient fast_eig

SLANG is Faster than GD Classification on USPS with BNNs Test LogLik

References

- Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam, (ICML 2018), Khan, Nielsen, Tangkaratt, Lin, Gal, and Srivastava.
- SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient, (NeurlPS 2018), Mishkin, Kunstner, Nielsen, Schmidt, Khan.
- Fast and Simple Natural-Gradient Descent for Variational Inference in Complex Models (ISITA 2018), Khan and Nielsen.