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Goals and Challenges

Goal: To design Al that can continually learn using Bayesian uncertainty.

Examples: Uncertainty, i.e., knowing how much we don’t know, is useful in designing:

 Robots that can understand their environments (e.g., for elderly care)
* Al to design high-performance buildings

 Methods that improve performance of deep-learning methods
p(D|0)p(0) For depth estimation, the algorithm is uncertain

P P This knowledge can improve safety for self-
driving cars (taken from Kendall et. al. 2017)
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Main Idea: Approximate integration by optimization v

Intractable integral

Bayesian Integral is difficult
p(D|theta) Prior p(theta)

For non-conjugate models, we propose Avoiding Local Minima Quality of Uncertainty Estimates

Conjugate-Computation Variational

Inference (CVI) to approximate the f X‘/\
Bayesian integration
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* Scales to very large problems with minimal effort g4 Vol () g Vol (0)+ Au
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Our method also improves existing optimizers: reduce R =@ R s BB =N methods (in magenta) and

_ : . : also require fewer samples
overfitting, avoid local minima, and encourages exploration.

Scalable Inference in Structured Deep Models Using Message Passing
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