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Goal: To design AI that can continually learn using Bayesian uncertainty.

Examples: Uncertainty, i.e., knowing how much we don’t know, is useful in designing:
• Robots that can understand their environments (e.g., for elderly care) 
• AI to design high-performance buildings 
• Methods that improve performance of deep-learning methods

Challenge: Computation of Bayesian uncertainty is difficult

Main Idea: Approximate integration by optimization

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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For depth estimation, the algorithm is uncertain 
about the edges in the scene (see right image). 

This knowledge can improve safety for self-
driving  cars (taken from Kendall et. al. 2017)

Scene Uncertainty estimate

Avoiding Local MinimaFor non-conjugate models, we propose 
Conjugate-Computation Variational
Inference (CVI) to approximate the 
Bayesian integration
• CVI is a general method that is also 

easy to implement for many models
• It expresses inference in a complex 

model as an inference in a simpler 
model, e.g., logistic Regression 
expressed as linear Regression.

• For a general graphical model, this can 
be implemented using message passing 10-1 100 101 102 103
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Vadam: Variational Inference by Perturbing Adam

Uncertainty Approximations
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Figure 2. (Left) Illustration of Vadam for 2D logistic regression (Right) Test RMSE for the UCI experiments showing that Vadam-10
converges the fastest while BBVI is the slowest (even after using 200 samples). We also see that methods with momentum (Vprop-10 M
and Vadam) work better than methods without them.

(a) Vadam reduces overfitting for smaller datasets. We show train and test log-loss
for an increasing data size (from left to right). We see that for smaller datasizes,
RMSprop and Adam overfit, while Vadam does not. As the dataset size increases,
RMSprop and Adam behave like Vadam.

(b) Results for LSTM on War&Peace dataset.
We repeat the results shown in Fig. 2 (b) of
Wilson et al. (2017) and show that VadaGrad
does not suffer from the issues pointed in that
paper, and it performs comparable to SGD.

Figure 3.

Figure 4. Vadam reduces overfitting on small and full MNIST
dataset.

averaging because the prior precision is too low to be of any
use. A likely explanation is that, due to perturbation, Vadam
is able to avoid minima that overfit.

We repeated these results for MNIST, where we made a
small version of the dataset by using the test set as the

train set. This gave us a small MNIST dataset with 10,000
examples. Results in Fig. 4 show similar trends, i.e., Vadam
overfits less than RMSprop and Adam. For large MNIST,
we tried to increase � to 0.1 and found that the test log-loss
stabilizes at a good value. This is shown in purple in Fig. 4.

Finally, Table 2 shows the final test loglosses and test ac-
curacies for all algorithms, where we see that Vadam give
lower test log-loss while keeping the test accuracy low.

The results for MNIST can be found in Fig. 4. The results
for a1a, a3a, a5a and a9a can be found in Fig. 3(a). Table
2 shows the final test loglosses and test accuracies for the
various datasets and algorithms.

From these results we can see that Vadam seems to reduce
the tendency to overfit. Vadam gives lower test logloss and
higher training logloss compared to the other algorithms
even when the prior precision � is set to be very small. When
� is increased, even better generalization performance was
observed. From the experiments on a1a, a3a, a5a and a9a we
can see that Vadams tendency to reduce overfitting is even

Goals and Challenges

Simplifying Approximate Bayesian Inference for Complex Models

Fast Inference for Deep Learning

Scalable Inference in Structured Deep Models Using Message Passing 

To enable Gaussian variational inference in deep models, we 
slightly modify existing deep learning methods, such as 
RMSprop and Adam, to perform variational inference
• Perturb the network weights during gradient evaluations
• Requires a few lines of code change in the existing software
• Scales to very large problems with minimal effort

Our method also improves existing optimizers: reduce 
overfitting, avoid local minima, and encourages exploration.
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For Structured deep models 
(shown in the right), we 
propose an efficient message 
passing algorithm. Our 
algorithm is a structured, 
amortized, and natural-gradient 
(SAN) inference algorithm.
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Bayesian Integral is difficult
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For 2-D logistic, variances for 
our method (red line) are 

shrunk compared to the truth 
(dashed black lines)

Bayesian Regression with DNN 
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Vprop
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(N=1030, D = 8) DNN [50] with tanh

Our method (in red) is much 
faster than the existing 

methods (in magenta) and 
also require fewer samples

Our method (thick lines) 
reaches flat minima, while 

gradient descent (black lines) 
gets stuck.

Our SAN 
method is 
as flexible 
as VAE but 

can also 
cluster the 
data similar 

to GMM
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