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The	Goal	of	My	Research

“To	understand	the	fundamental	principles	of	
learning	from	data and	use	them	to	develop	
algorithms that	can	learn	like	living	beings.”
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The	Goal	of	My	Research

“To	understand	the	fundamental	principles	of	
learning	from	data and	use	them	to	develop	
algorithms that	can	learn	like	living	beings.”
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Uncertainty	in	Deep	Learning

To	estimate	the	confidence	in	the	
predictions	of	a	deep-learning	system
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Example:	Which	is	a	Better	Fit?
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Real	data	from	Tohoku	(Japan).	Example	taken	from	Nate	Silver’s	book	“The	signal	and	noise” 4



Example:	Which	is	a	Better	Fit?
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When	the	
data	is	scarce
and	noisy,	
e.g.,	in	
medicine,	
and	robotics.



Uncertainty	for	Image	Segmentation
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Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic
uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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(taken	from	Kendall	et	al.	2017)
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Outline	of	the	Talk

• Uncertainty	is	important
– E.g.,	when	data	are	scarce,	missing,	unreliable	etc.

• Uncertainty	computation	is	difficult
– Due	to	large	model	and	data	used	in	deep	learning

• This	talk:	fast	computation	of	uncertainty
– Ideas	from	Bayesian	Inference,	Optimization,	
information	geometry

–Methods	that	are	extremely	easy	to	implement
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Uncertainty in	Deep	Learning

Why	is	it	difficult	to	estimate	it?
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A	Naïve	Method
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Bayesian	Inference
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Bayes’	rule	:

Intractable	integral

p(✓|D) =
p(D|✓)p(✓)R
p(D|✓)p(✓)d✓

Posterior	
distribution

Narrow Wide



Variational Inference	with	Gradients
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Data-fit	termRegularizer

Bayes	by	Backprop (Blundell	et	al.	2015),	
Practical	VI	(Graves	et	al.	2011),	

Black-box	VI	(Rangnathan et	al.	2014)	etc.

p(✓|D) ⇡ q(✓) = N (✓|µ,�2)

maxL(µ,�2
) := Eq

h
log

p(✓)

q(✓)

i
+

NX

i=1

Eq[log p(Di|✓)]

µ µ+ ⇢rµL

�  � + ⇢r�L

Our	contribution:	Using	natural-gradients	leads	to faster	
and	simpler algorithm	than	gradients	methods)

- Khan	&	Lin	(AIstats 2017),	Khan	et	al.	(ICML	2018),	Khan	&	Nielsen	(ISITA2018)	



VI	using	Natural-Gradient	Descent
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F (�) := Eq�

h
r log q�(w)r log q�(w)

>
iFisher	Information	Matrix	(FIM)

Natural	Gradients

Gradient

Gradient	Descent:

Natural-Gradient	
Descent:
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Euclidean	Distance	is	inappropriate!
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(Amari	1999,	Sato	2001,	Honkela et.al.	2010,	Hoffman	et.al.	2013,	Khan	and	Lin	2017)



Natural-gradient	vs	gradients
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Natural-Gradient	VI Gradient-based	VI

µ µ+ ↵
r̂µLp
sµ + �

�  � + ↵
r̂�Lp
s� + �

(Graves	et	al.	2011,	Blundell	et	al.	2015)

µ µ� ��2 rµL
1

�2
 1

�2
+ 2� r�2L

This	type	of	update	can	be	derived	when	q	is	an	ExpFamily.	It	is	
also	a	generalization	of	methods	such	as,	Kalman filtering,	Sum-
product,	etc.,	Variational Message	Passing	(Winn	and	Bishop	2005),	
Stochastic	variational inference	(Hoffman	et	al.	2013).	See	Khan	and	
Nielsen,	2018 for	a	summary.



Fast	Computation	of	
(Approximate)	Uncertainty
Approximate	by	a	Gaussian	distribution,	

and	find	it	by	“perturbing”	the	
parameters	during	backpropagation
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Fast	Computation	of	Uncertainty
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1. Select	a	minibatch
2. Compute	gradient	using	backpropagation
3. Compute	a	scale	vector	to	adapt	the	learning	rate
4. Take	a	gradient	step

✓  ✓ + learning rate ⇤ gradientp
scale + 10�8

0.	Sample	𝜖 from	a	standard	normal	distribution
Adaptive	learning-rate	method	(e.g.,	Adam)

NY

i=1

p(yi|f✓(xi))

✓temp  ✓ + ✏ ⇤
p
N ⇤ scale + 1

✓  ✓ + learning rate ⇤ gradient + ✓/Np
scale + 1/N

✓ ⇠ N (✓|0, I)

Variational Adam	(Vadam)

Variance

Mean



Illustration:	Classification
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Logistic	regression	
(30	data	points,	2	
dimensional	input).

Sampled	from	
Gaussian	mixture	
with	2	components



Adam	vs	Vadam
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For	both	algorithms,
Minibatch of	5

Learning_rate =	0.01
Prior	precision	=	0.01

Adam

Vadam (mean)

Vadam (samples)



Why	does	this	work?

• This	algorithm	is	obtained	by	replacing	
“gradients”	by	“natural	gradients”	(using	
information	geometry)
– See	our	ICML	2018	paper.
– The	scaling	in	natural	gradient	is	related	to	the	
scaling	in	Newton	method.	

– Our	method	is	a	more	principled	approach	than	
the	Bayesian	dropout	(Gal	and	Gharhamani,	2016).

– Some	caveats:	Choose	small	minibatches,	better	
results	are	obtained	with	VOGN.
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Faster,	Simpler,	and	More	Robust
Regression	on	Australian-Scale	dataset	using	deep	neural	
nets	for	various	number	of	minibatch size.
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Existing	Method	(BBVI)
Our	method	(Vadam)
Our	method	(VOGN)



Faster,	Simpler,	and	More	Robust
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Results	on	MNIST	digit	classification	(for	various	values	of	
Gaussian	prior	precision	parameter	λ)

Existing	Method	(BBVI)
Our	method	(Vadam)



Parameter-Space	Noise	for	Deep	RL
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On	OpenAI Gym	Cheetah	with	DDPG	
with	DNN	with	[400,300]	ReLU

Vadam(noise	using
natural-gradients)

SGD	(noise	using	
standard	gradients)

Reward	2038

Reward	5264

Ruckstriesh et.al.2010,	Fortunato	et.al.	2017,	Plapper et.al.	2017

SGD	(no	noise)



Reduce	Overfitting	with	Vadam

27

Vadam shows	
consistent	
train-test	
performance,	
while	Adam	
overfits when	
N	is	small	

BNN	
classification	
on	a1a	- a9a	
datasets	

Adam	TestAdam	Test

Adam	Train Adam	Train

Adam	Test

Adam	Train

Vadam Test	and	train Vadam Test	and	train

Vadam Test	and	train Adam	Test

Adam	Train
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Avoiding	
Local	

Minima
An	example	
taken	from	
Casella	and	

Robert’s	book.

Vadam reaches	
the	flat	

minima,	but	GD	
gets	stuck	at	a	
local	minima.

Optimization	by	smoothing,	Gaussian	homotopy/blurring	etc.,	Entropy	SGLD	etc.



Summary

• Uncertainty	is	important,	especially	when	the	
data	is	scarce,	missing,	unreliable	etc.

• We	can	obtain	uncertainty	cheaply	with	very	
little	effort
– Bayesian	deep	learning

• It	works	reasonably	well	on	our	benchmarks.
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Open	Questions

• Extensions	to	other	types	of	distributions
• Quality	and	usefulness	of	uncertainty
–Multiple	local	minima	make	it	difficult	to	establish

• Estimating	various	types	of	uncertainty
–Model	uncertainty	vs	data	uncertainty	
– Applications	play	a	big	role	here

• Application	to	active	learning,	reinforcement	
learning,	continual	learning
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Thanks!

Slides,	papers,	and	code	available	at
https://emtiyaz.github.io

We	are	looking	for	post-docs,	RAs,	and	
interns
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Bayesian	Inference	for	Classification
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Map	Estimate

Samples	from	
the	posteriorSampled	decision	

boundaries



RMSprop vs	Vprop
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RMSprop
Vprop


