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The Goal of My Research

“To understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”
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The Goal of My Research

“To understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”



Uncertainty in Deep Learning

To estimate the confidence in the
predictions of a deep-learning system



Example: Which is a Better Fit?
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Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise” 4
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Example: Which is a Better Fit?

When the
data is scarce
and noisy,
e.g., in
medicine,
and robotics.



Uncertainty for Image Segmentation

Image Truth Prediction Uncertainty

(a) Input Image (b) Ground Truth (c) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

(taken from Kendall et al. 2017)
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Outline of the Talk

* Uncertainty is important

— E.g., when data are scarce, missing, unreliable etc.

* Uncertainty computation is difficult

— Due to large model and data used in deep learning

* This talk: fast computation of uncertainty

— |deas from Bayesian Inference, Optimization,
information geometry

— Methods that are extremely easy to implement



Uncertainty in Deep Learning

Why is it difficult to estimate it?
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Bayesian Inference

p(D]0)p(6)
Bayes' rule: p(0|D) =
. Po(ste‘rior) \ fp(pw)p(e)d(g;
distribution '

Intractable integral

Narrow Wide
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Variational Inference with Gradients

p(0|D) = q(0) = N (8|, o%)

N
v
max L(1,0%) = By [log 5| 4 3", [log p(Di[6)]
q(0)) =
Regularizer Data-fit term

= K T pvuﬁ Bayes by Backprop (Blundell et al. 2015),
Practical VI (Graves et al. 2011),

O < 0+ ,OVUL Black-box VI (Rangnathan et al. 2014) etc.

Our contribution: Using natural-gradients leads to faster

and simpler algorithm than gradients methods)
- Khan & Lin (Alstats 2017), Khan et al. (ICML 2018), Khan & Nielsen (ISITA2018)
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VI using Natural-Gradient Descent

Gradient
1

Gradient Descent: )\ < \ + ,OIV)\E()\) |

Natural-Gradient A < X+ pF'(\)'VaL(N)
Descent: ‘ i /
Natural Gradients

VL)

Fisher Information Matrix (FIM)
F(X) :=Eq, {V log gx(w)V log g (w) '
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Euclidean Distance is inappropriate!

Two Gaussians with mean 1 and 10 respectively
and variances equal to g, have Euclidean distance = 10
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Same as the top row but with the variance g, > oy
but still Euclidean distance = 10
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(Amari 1999, Sato 2001, Honkela et.al. 2010, Hoffman et.al. 2013, Khan and Lin 2017)



Natural-gradient vs gradients

(Graves et al. 2011, Blundell et al. 2015)

Natural-Gradient VI Gradient-baseq VI
°V,LC — 1+« Viuk
1M%M1_50 : SRRV,
$ 26 V2 L @ r
0? 0 o+ 0+ « Z

Vs, +0

This type of update can be derived when q is an ExpFamily. It is
also a generalization of methods such as, Kalman filtering, Sum-
product, etc., Variational Message Passing (Winn and Bishop 2005),
Stochastic variational inference (Hoffman et al. 2013). See Khan and
Nielsen, 2018 for a summary.
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Fast Computation of
(Approximate) Uncertainty

Approximate by a Gaussian distribution,
and find it by “perturbing” the
parameters during backpropagation
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Fast Computation of Uncertainty

Hp(yilfe(wz‘)) 0 ~ N(0]0,1)

Ndaptive b duing{\dtdanethod (e.g., Adam)
0. Sample € from a standard normal distribution
Otemp — O +exvVN xscale + 1

Select a minibatch Variance

Compute gradient using backpropagation

Compute a scale vector to adapt the learning rate
. Take a gradient step

BwN e

gradiadient) / N
Wswalle + 107

Mean @ & @ + learning. rafe
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Input 2

10

lllustration: Classification
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Logistic regression
(30 data points, 2
dimensional input).
Sampled from
Gaussian mixture
with 2 components



Adam vs Vadam

Iteration 1

m— Adam

= \/adam (mean)

Vadam (samples)

For both algorithms,
Minibatch of 5
Learning_rate = 0.01
Prior precision = 0.01
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Why does this work?

* This algorithm is obtained by replacing
“gradients” by “natural gradients” (using
information geometry)

— See our ICML 2018 paper.

— The scaling in natural gradient is related to the
scaling in Newton method.

— Our method is a more principled approach than
the Bayesian dropout (Gal and Gharhamani, 2016).

— Some caveats: Choose small minibatches, better
results are obtained with VOGN.



Faster, Simpler, and More Robust

Regression on Australian-Scale dataset using deep neural
nets for various number of minibatch size.

Batch Size: 1

-=== Existing Method (BBVI)
Our method (Vadam)
Our method (VOGN)
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Faster, Simpler, and More Robust

Results on MNIST digit classification (for various values of
Gaussian prior precision parameter A)

Precision: 0.01
2.00 .

1 75 —— Existing Method (BBVI)
—— Our method (Vadam)

Test log,,loss
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Parameter-Space Noise for Deep RL

On OpenAl Gym Cheetah with DDPG Reward 5264

with DNN with [400,300] ReLU /
5000 A ] ] '

Vadam(noise using
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Ruckstriesh et.al.2010, Fortunato et.al. 2017, Plapper et.al. 2017




log,loss

log,loss

Reduce Overfitting with Vadam

ala (N = 1,605)

a3a (N = 3,185)
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Vadam shows
consistent
train-test
performance,
while Adam
overfits when
N is small

BNN
classification
onala-a9a
datasets
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= = = Gradient Descent
= \/adam to Vadagrad

O initial Positions Avoiding
Local
Minima
An example
taken from

Casella and
Robert’s book.

Vadam reaches
the flat
minima, but GD
gets stuck at a
local minima.

Optimization by smoothing, Gaussian homotopy/blurring etc., Entropy SGLD etc.



Summary

* Uncertainty is important, especially when the
data is scarce, missing, unreliable etc.

 \We can obtain uncertainty cheaply with very
little effort

— Bayesian deep learning

* |t works reasonably well on our benchmarks.



Open Questions

Extensions to other types of distributions
Quality and usefulness of uncertainty

— Multiple local minima make it difficult to establish

Estimating various types of uncertainty
— Model uncertainty vs data uncertainty

— Applications play a big role here

Application to active learning, reinforcement
learning, continual learning
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Thanks!

Slides, papers, and code available at
https://emtiyaz.github.io

We are looking for post-docs, RAs, and
Interns
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Feature 2

Bayesian Inference for Classification

Sampled decision
boundaries

Feature 1

Samples from
the posterior

o 2 KB 6 8 10 12 14
Weight 1

Map Estimate
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RMSprop vs Vprop

- RMSprop
e \/DFOP

Feature 2

- 6 8 10 12 14
Feature 1 Weight 1
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