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We add our proposed method to the comparison of Rasmussen and Nickisch (2008) for

Concave Bound:

Motivation: Non-parametric regression using Gaussian processes is one of the most pop-

ular and widely used models in machine learning, with application to binary and multi-class » Our variational bound is strictly concave when f, is jointly concave with respect to m V. binary GPs. Our approach is as fast as EP and have the same accuracy as well, but unlike
Binary Classification Data Predictive probability » Given m, optimization w.r.t. V is a form of covariance selection or graphical Lasso.
4 ; 4 0.9 But still O(N?) variational parameters! Pro posed
éx 10.8
O 107 Concave Local Variational Bound: List of non-conjugate likelihoods with concave local variational bounds (LVBs).
P ' X o - T Distribut 0 wves 1 —rr Ty peseeses " o
2 0 SRR —> 2 0 ype istribution p(y|z) llog p(y|z)] S MCMC
) QO B A B 00000000 N Y N O L e e e . o - o - _ o
LL Ll ) r " :
x : . _ _ e—e e V4 . . | .
% Class 1 C_ount P0|sson. | ply = k|z) k! ym —exp(m + v/2) —log y! Apalytlc?al L>)~ Opper :
O Class 2 Binary Bernoulli logit p(y =1|z) = o(2) ym — E[llp(z)] Piecewise Bounds o :
-4, ; . -4, 0 y Categorical Multinomial logit p(y = k|z) = e* 52 y"m — E[Ise(z)] Blei, Bouchard, etc. S -Arch :
Eeature 1 Feature 1 Ordinal Cumulative logit p(y < k|z) = o(¢x — z) m— Elllp(—¢y + z) + lIp(—¢,—1 + z)| Piecewise Bounds S |
. o T |
Problem: For real-valued outputs, we can combine the GP prior with a Gaussian likelihood < :
and perform exact posterior inference in closed form. For problems, such as classification, Here, o(z) =1/(1 + e7%), llp(x) = log(1 + exp(x)), Ise is the log-sum-exp function, and ¢, are real numbers suchthat  § | (2 fp @~~~ =7~~~ ====7=7% hoosoeess I
the likelihood is no longer conjugate to the GP prior and exact inference becomes in- 01 < P2 < ... < ¢k, for K ordered categories. '
tractable. '
Solution: We make the following contributions for fast and tractable Bayesian inference. It is easy to see that E[log p(y|z)] is concave for Poisson distribution, since exp(m + v/2) is convex. Concavity for other
» We derive a concave lower bound to the log marginal likelihood. distributions can be obtained in a similar way by bounding the red (highlighted) part by a convex function.
» We derive a convergent algorithm for lower bound maximization. Speed
Advantages:

» Reduction of number of variational parameter from O(N?) to O(N).
» Fast convergence due to concavity.

» Computation cost identical to EP, but convergent and no numerical problems. A FaSt C O nve rg e nt Al g O rith m R eS u ItS

We reduce the number of parameters from O(N?) to O(N) by using the structure of V. Deriva- Binary Classification: on UCI lonosphere data (N = 200), comparing to Opper-Archambeau approach and EP.
tive with respect to V takes the following form,

Gaussian Process Regression
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