

Fast Bayesian Inference for Non-conjugate Gaussian Process Regression Mohammad Emtiyaz Khan, Shakir Mohamed, and Kevin P. Murphy Department of Computer Science, University of British Columbia

Introduction

Motivation: Non-parametric regression using Gaussian processes is one of the most popular and widely used models in machine learning, with application to binary and multi-class classification, as well as ordinal and Poisson regression.

Problem: For real-valued outputs, we can combine the GP prior with a Gaussian likelihood and perform exact posterior inference in closed form. For problems, such as classification, the likelihood is no longer conjugate to the GP prior and exact inference becomes intractable.

- **Solution:** We make the following contributions for fast and tractable Bayesian inference. We derive a concave lower bound to the log marginal likelihood.
- ► We derive a **convergent algorithm** for lower bound maximization.

Advantages:

- Reduction of number of variational parameter from $O(N^2)$ to O(N).
- Fast convergence due to concavity.
- Computation cost identical to EP, but convergent and no numerical problems.

Gaussian Process Regression

Given observation y_n with features \mathbf{x}_n , GPs use a nonlinear latent function $z(\mathbf{x}_n)$ to model y_n .

The GP prior $p(\mathbf{z}|\mathbf{X}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is characterized by,

- Mean function: e.g. zero mean function $\mu(\mathbf{x}) = 0$. **Covariance function:**, e.g. squared-exponential,
- $\Sigma(\mathbf{x}_i, \mathbf{x}_j) = \sigma^2 \exp[-(\mathbf{x}_i \mathbf{x}_j)^T (\mathbf{x}_i \mathbf{x}_j)/(2s)].$ **Hyperparameters:** $\theta = (s, \sigma)$.

The likelihood is factorial where each $p(y_n|z_n)$ depends on the type of observations (see the table in the next column).

 $p(\mathbf{y}|\mathbf{z}) = \prod p(y_n|z_n)$

Concave Lower Bounds

Variational lower bound: Computation of the marginal likelihood is intractable since the likelihood is not conjugate to the Gaussian prior. Using Jensen's inequality, we can obtain a lower bound to the marginal likelihood.

$$\mathcal{L}(\theta) = \log \int p(\mathbf{y}|\mathbf{z}) \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{z} = \log \int \frac{p(\mathbf{y}|\mathbf{z}) \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathcal{N}(\mathbf{z}|\mathbf{m}, \mathbf{V})} \mathcal{N}(\mathbf{z}|\mathbf{m}, \mathbf{V})$$

$$\geq \int \mathcal{N}(\mathbf{z}|\mathbf{m}, \mathbf{V}) \log \frac{\mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathcal{N}(\mathbf{z}|\mathbf{m}, \mathbf{V})} + \int \mathcal{N}(\mathbf{z}|\mathbf{m}, \mathbf{V}) \log p(\mathbf{y}|\mathbf{z}) d\mathbf{z}$$

$$\geq -\mathcal{K}L[\mathcal{N}(\mathbf{m}, \mathbf{V})||\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})] + \sum_{n=1}^{N} \int \mathcal{N}(z_n|m_n, V_{nn}) \log p(y_n|z_n) d\mathbf{z}$$

The second integral is not tractable for many distributions. We make use of tractable **local variational bounds**, such that $\mathbb{E}[\log p(y_n|z_n)] \ge f_b(y_n, m_n, V_{nn})$.

	0.9
-	0.8
-	0.7
-	0.6
-	0.5
-	0.4
	0.3
-	0.2
	0.1

 \mathbf{V}) $d\mathbf{z}$

 $\mathcal{L}_{J}(\boldsymbol{\theta}, \mathbf{m}, \mathbf{V}) = \frac{1}{2} \left[\log |\mathbf{V} \mathbf{\Sigma}^{-1}| - \operatorname{tr}(\mathbf{V} \mathbf{\Sigma}^{-1}) - (\mathbf{m} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1} (\mathbf{m} - \boldsymbol{\mu}) + N \right] + \sum_{n=1}^{N} f_{b}(y_{n}, m_{n}, V_{nn})$

Concave Lower Bounds

Concave Bound:

• Our variational bound is strictly concave when f_b is jointly concave with respect to \mathbf{m}, \mathbf{V} . ► Given V, optimization w.r.t. m is a non-linear least-squares function. ► Given **m**, optimization w.r.t. **V** is a form of **covariance selection** or graphical Lasso.

- But still $O(N^2)$ variational parameters!

Concave Local Variational Bound: List of non-conjugate likelihoods with concave local variational bounds (LVBs).

Туре	Distribution	p(y z)
Count	Poisson	$p(y=k z)=rac{e^{-e^{i/}}e^{kz}}{k!}$
Binary	Bernoulli logit	$p(y = 1 z) = \sigma(z)$
Categorical	Multinomial logit	$p(y = k \mathbf{z}) = e^{z_k - \text{lse}(\mathbf{z})}$
Ordinal	Cumulative logit	$p(y \leq k z) = \sigma(\phi_k - z)$

Here, $\sigma(z) = 1/(1 + e^{-z})$, $Ip(x) = \log(1 + \exp(x))$, *lse* is the log-sum-exp function, and ϕ_k are real numbers such that $\phi_1 < \phi_2 < \ldots < \phi_K$, for K ordered categories.

It is easy to see that $\mathbb{E}[\log p(y|z)]$ is concave for Poisson distribution, since $\exp(m + v/2)$ is convex. Concavity for other distributions can be obtained in a similar way by bounding the red (highlighted) part by a convex function.

A Fast Convergent Algorithm

We reduce the number of parameters from $O(N^2)$ to O(N) by using the structure of V. Derivative with respect to V takes the following form,

The naive reparameterization $V = (\Sigma^{-1} + \lambda)^{-1}$ destroys concavity.

$$f(V) = [\log(V\Sigma^{-1}) - V\Sigma^{-1}]/2 + f_b(y, m, V)$$

$$f(\lambda) = [-\log(1 + \Sigma\lambda) - (1 + \Sigma\lambda)^{-1}]/2 + f_b(y, m, V)$$

$$\nabla_{\lambda}^2 f(\lambda) = \frac{1}{2} [\Sigma/(1 + \Sigma\lambda)]^2 (\Sigma\lambda - 1) + \nabla_{\lambda}^2 f_b(y, m, V)$$

We use two facts. First, $K_{ij} = \Omega_{ij}$, $\forall i \neq j$ and second, the following relation between **K** and **V**,

We fix all elements of K and update k_{22} via v_{22} . Define $\tilde{k}_{22} = \mathbf{k}_{12}^T \mathbf{K}_{11}^{-1} \mathbf{k}_{12}$.

$$k_{22} = \Omega_{22} + 2 \frac{\partial f_b}{\partial v_{22}}$$
 and $v_{22} = 1 / \left(k_{22} - \tilde{k}_{22} \right) \Rightarrow V_{22}$

Proposed Algorithm	Expect Update m and V	
Update V.		
$\blacktriangleright \text{Compute } \widetilde{k}_{22} \leftarrow k_{22} - 1/v_{22}.$	Compute c	
► Update marginal variance v_{22} .	Update site	
Rank 1 update V.	Rank 1 upo	
Update m with non-linear least-squares.	► Update m .	

LVBs $\mathbb{E}[\log p(y|z)]$ Analytical $ym - \exp(m + v/2) - \log y!$ Piecewise Bounds $ym - \mathbb{E}[llp(z)]$ $\mathbf{y}^T \mathbf{m} - \mathbb{E}[\text{lse}(\mathbf{z})]$ Blei, Bouchard, etc. $m - \mathbb{E}[llp(-\phi_y + z) + llp(-\phi_{y-1} + z)]$ Piecewise Bounds

cavity parameters $\tilde{m}_{-2}, \tilde{v}_{-22}$. te parameters $\tilde{m}_2, \tilde{v}_{22}$. date V.

Results

0 20K 40K 60K 80K 100K

Mega-flops

10K 20K 30K 40K 50K

Mega-flops

Conclusions