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Introduction
Motivation: Bernoulli-logistic Latent Gaussian Models (bLGMs) are an im-
portant class of probabilistic models that includes models such as binary
factor analysis and binary probabilistic principal components analysis, as
well as Bayesian logistic regression and Gaussian process classification.
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Problem: Parameter learning is difficult in bLGMs due to an intractable in-
tegral in the marginal likelihood.

Solution: We propose to solve the intractable integral through the appli-
cation of piecewise linear and quadratic bounds to the logistic-log-partition
function. Piecewise bounds have the important property that their maxi-
mum error is bounded and can be driven to zero by increasing the number
of pieces. Resulting algorithms achieve significant improvements over the
existing variational quadratic bounds.

Bernoulli-Logistic LGMs
Our model uses latent Gaussian variables to model the distribution of binary
observations. To obtain n’th data vector, we first sample a latent Gaussian
vector zn ∈ RL and then take a linear combination of zn to obtain the param-
eter ηdn for the d ’th Bernoulli-logistic distribution. Distribution of the binary
vector yn ∈ {0,1}D is the product of individual Bernoulli-logistic distribution.
Our goal is to learn the maximum likelihood estimate of parameter θ given
y1, . . . ,yN.
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p(zn|θ) = N (zn|µ,Σ)

ηdn = Wdzn + bd

p(yn|zn,θ) =

Dd∏
d=1

exp(ydnηdn)

1 + exp(ηdn)

θ = {µ,Σ,W,b}

Parameter Learning
Variational Lower Bound to the Marginal Likelihood: Computation of the marginal likelihood
is intractable as the Bernoulli-logistic likelihood is not conjugate to the Gaussian prior. Using
Jensen’s inequality, we can obtain a lower bound to the marginal likelihood, which can be
computed as sum of many one dimensional integrals.

I(θ) = log
∫ D∏

d=1

p(yd |z,θ)N (z|µ,Σ)dz = log
∫ ∏D

d=1 p(yd |z,θ)N (z|µ,Σ)

N (z|m,V)
N (z|m,V)dz

≥
D∑

d=1

∫
log p(yd |z,θ)N (z|m,V)dz− KL [N (m,V)||N (µ,Σ)]

I(θ) = max
m,V

D∑
d=1

−
∫

log(1 + exd)N (m̃d , ṽd)dxd + Tractable terms in m and V

These one-dimensional integrals are still intractable but a tractable lower bound can be com-
puted using bounds on log(1 + exp(x)), the logistic-log-partition (LLP) function.

Quadratic Bounds vs Piecewise Bounds: Two existing quadratic bounds are due to Bohning
and Jaakkola. Both of these have infinite maximum error, which can cause severe bias in the
parameter estimates. Piecewise bounds have bounded error.

Bohning Jaakkola Piecewise

Piecewise Bounds
The Optimization Problem: We can find the
parameters of piecewise bounds by minimizing
the maximum error with constraints to enforce
the upper bound property and to make sure that
the intervals are ordered.

min
α

max
r∈{1,..,R}

max
tr−1≤x<tr

arx2 + brx + cr − llp(x)

arx2 + brx + cr − llp(x) ≥ 0 ∀ r , x ∈ [tr−1, tr ]
tr − tr−1 > 0 ∀r ∈ {1, ..,R}
ar ≥ 0 ∀r ∈ {1, ..,R}

Piecewise Linear vs Quadratic:
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Results
In all experiments, we refer to the Bohning bound as ‘B’, the Jaakkola bound as ‘J’, piecewise linear (quadratic) bound with n pieces as ‘Ln’ (‘Qn’).

1-D Synthetic Data Experiments: On a 1-D
bLGGM with µ = 2 and σ = 2, we compare the true
likelihood and the lower bounds.
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5-D Synthetic Data Experiments: On a 5-D bLGGM, we compare covariance estimates
and KL divergences between the true discrete distribution and the estimated discrete dis-
tribution.
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Binary Latent Gaussian Graphical Model
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The LED dataset (D = 24 and N = 2000) First plot shows the imputation error for the LED dataset
on the bLGGM. Each point is a random train-test split. A point below dashed line shows that the
error in the piecewise bound is lower than other bounds. Second plot shows the same for the sparse
bLGGM (Σ is sparse). Third plot shows the error with respect to regularization parameters.
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Binary Factor Analysis
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The Voting Dataset (D = 24 and N = 2000) First plot shows the imputation error vs time for binary
factor analysis (bFA). Second plot shows the imputation error for random train-test split.
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Imputation Error vs Time on Voting Data
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Gaussian Process
Classification
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The Ionosphere Dataset (D = 200) First two plots show the cross-entropy prediction error obtained with out
algorithm and Expectation Propagation (EP). Next two plots show the lower bound obtained by our algorithm and
approximation to the marginal likelihood obtained by EP.
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