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Motivation: Bernoulli-logistic Latent Gaussian Models (bLGMs) are an im- Variational Lower Bound to the Marginal Likelihood: Computation of the marginal likelihood In all experiments, we refer to the Bohning bound as ‘B’, the Jaakkola bound as ‘J’, piecewise linear (quadratic) bound with n pieces as ‘Ln’ (‘Qn’).
portant class of probabilistic models that includes models such as binary is intractable as the Bernoulli-logistic likelihood is not conjugate to the Gaussian prior. Using _ _ _ _ | |
factor analysis and binary probabilistic principal components analysis, as Jensen’s inequality, we can obtain a lower bound to the marginal likelihood, which can be 1-D Synthetic Data Experiments: On a 1-D  5-D Synthetic Data Experiments: On a 5-D bLGGM, we compare covariance estimates
well as Bayesian logistic regression and Gaussian process classification. computed as sum of many one dimensional integrals. bLGGM with 1 = 2 and o = 2, we compare the true  and KL divergences between the true discrete distribution and the estimated discrete dis-
D N likelihood and the lower bounds. tribution.
Binary Data Latent Factor Embedding 1(6) =lo H (Valz, O)N (z|p, X)dz = lo 11g-1 P(ya[2, 6)N (2]pe z)j\/(z\m V)dz ; Covariance True Covariance B
| | | = 100 P\ Vdl|Z, LL, = 109 N(z|m V) : Bohning vs True Jaakkola vs True KL Divergence vs Bounds
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S These one-dimensional integrals are still intractable but a tractable lower bound can be com- : f}}}}}}fff}}ff}ffffvi - ;fnfhfiiii
outed using bounds on log(1 -+ exp(x)), the logistic-log-partition (LLP) function. oYYy Hdi
Data Dimensions 1 5 1 Quadratic Bounds vs Piecewise !30_u_nds: Tvyo existing quac_nlratic bounds are due to Bohning O
Factor 1 and Jaakkola. Both of these have infinite maximum error, which can cause severe bias in the -10 B J L3 L4 L5 L10 O3 04 Q5 Q10
parameter estimates. Piecewise bounds have bounded error. Bound
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Binary Latent Gaussian Graphical Model The LED dataset (D = 24 and N = 2000) First plot shows the imputation error for the LED dataset

10.8

;x _0:7 a3z + bz + 3 on the bLGGM. Each point is a random train-test split. A point below dashed line shows that the
~ ) ~ . I I error in the piecewise bound is lower than other bounds. Second plot shows the same for the sparse
o ' X 0 : : bLGGM (X is sparse). Third plot shows the error with respect to regularization parameters.
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Problem: Parameter learning is difficult in bLGMs due to an intractable in- 5 0.86- o0 5 | O@O % (]
tegral in the marginal likelihood. : : coce = CSS)O &% s 2 056
Solution: We propose to solve the intractable integral through the appli- P I eceWI Se BO u ndS IO ¢ | 0O , , "/d
cation of piecewise linear and quadratic bounds to the logistic-log-partition o 08 09 (084 09 P
function. Piecewise bounds have the important property that their maxi- Maxirum Error vs Number of Pieces
mum error is bounded and can be driven to zero by increasing the number The Optimization Problem: We can find the _ _ _ . . . . .
of pieces. Resulting algorithms achieve significant improvements over the oarameters of piecewise bounds by minimizing Binary Factor Analysis The Voting I?ataset (D =24 and N = 2000) !:lrst plqt shows the |mputat|on.error VS tllme for binary
existing variational quadratic bounds. the maximum error with constraints to enforce factor analysis (bFA). Second plot shows the imputation error for random train-test split.

the upper bound property and to make sure that
the intervals are ordered.

Imputation Error vs Time on Voting Data bFA on Voting data
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Our model uses latent Gaussian variables to model the distribution of binary tr—t—1>0 vre{l,., R} e £ o)
observations. To obtain n'th data vector, we first sample a latent Gaussian ar>0 vre{l,., R} - ; | |
vector z, € R! and then take a linear combination of z,, to obtain the param- 504 o
eter nqy for the d'th Bernoulli-logistic distribution. Distribution of the binary r ! ) |
vector y, € {0, 1}P is the product of individual Bernoulli-logistic distribution. Bound Pieces | | | | o«>00
Our goal is to learn the maximum likelihood estimate of parameter 6 given Piecewise Linear vs Quadratic: 10 10 10t 107 s e
Vi,..., YN- Time in Seconds Error with B and J
L3 '—'—P. Bound Q3 '—'—E Bound L3 LLP Bound Error Q3 LLP Bound Error
Gaussian Process The lonosphere Dataset (D = 200) First two plots show the cross-entropy prediction error obtained with out
o2 °2] Classification algorithm and Expectation Propagation (EP). Next two plots show the lower bound obtained by our algorithm and
| 0.15 0.15] | approximation to the marginal likelihood obtained by EP.
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