
Kullback-Leibler Proximal Variational Inference

Mohammad Emtiyaz Khan∗
Ecole Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
emtiyaz@gmail.com

Pierre Baqué∗
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Abstract

We propose a new variational inference method based on a proximal framework
that uses the Kullback-Leibler (KL) divergence as the proximal term. We make
two contributions towards exploiting the geometry and structure of the variational
bound. First, we propose a KL proximal-point algorithm and show its equivalence
to variational inference with natural gradients (e.g., stochastic variational infer-
ence). Second, we use the proximal framework to derive efficient variational al-
gorithms for non-conjugate models. We propose a splitting procedure to separate
non-conjugate terms from conjugate ones. We linearize the non-conjugate terms
to obtain subproblems that admit a closed-form solution. Overall, our approach
converts inference in a non-conjugate model to subproblems that involve inference
in well-known conjugate models. We show that our method is applicable to a wide
variety of models and can result in computationally efficient algorithms. Applica-
tions to real-world datasets show comparable performances to existing methods.

1 Introduction

Variational methods are a popular alternative to Markov chain Monte Carlo (MCMC) methods for
Bayesian inference. They have been used extensively for their speed and ease of use. In particular,
methods based on the evidence lower bound optimization (ELBO) are quite popular because they
convert a difficult integration problem to an optimization problem. This reformulation enables the
application of optimization techniques for large-scale Bayesian inference.

Recently, an approach called stochastic variational inference (SVI) has gained popularity for infer-
ence in conditionally-conjugate exponential family models [1]. SVI exploits the geometry of the
posterior distribution by using natural gradients and uses a stochastic method to improve scalability.
The resulting updates are simple and easy to implement.

Several generalizations of SVI have been proposed for general latent-variable models where the
lower bound might be intractable [2, 3, 4]. These generalizations, although important, do not take
the geometry of the posterior distribution into account.

In addition, none of these approaches exploit the structure of the lower bound. In practice, not all
factors of the joint distribution introduce difficulty in the optimization. It is therefore desirable to
treat “difficult” terms differently from “easy” terms.

∗A note on contributions: P. Baqué proposed the use of the KL proximal term and showed that the resulting
proximal steps have closed-form solutions. The rest of the work was carried out by M. E. Khan.
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In this context, we propose a splitting method for variational inference; this method exploits both
the structure and the geometry of the lower bound. Our approach is based on the proximal-gradient
framework. We make two important contributions. First, we propose a proximal-point algorithm
that uses the Kullback-Leibler (KL) divergence as the proximal term. We show that the addition of
this term incorporates the geometry of the posterior distribution. We establish the equivalence of our
approach to variational methods that use natural gradients (e.g., [1, 5, 6]).

Second, following the proximal-gradient framework, we propose a splitting approach for variational
inference. In this approach, we linearize difficult terms such that the resulting optimization problem
is easy to solve. We apply this approach to variational inference on non-conjugate models. We
show that linearizing non-conjugate terms leads to subproblems that have closed-form solutions.
Our approach therefore converts inference in a non-conjugate model to subproblems that involve
inference in well-known conjugate models, and for which efficient implementation exists.

2 Latent Variable Models and Evidence Lower-Bound Optimization

Consider a general latent-variable model with data vector y of length N and the latent vector z of
length D, following a joint distribution p(y, z) (we drop the parameters of the distribution from
the notation). ELBO approximates the posterior p(z|y) by a distribution q(z|λ) that maximizes a
lower bound to the marginal likelihood. Here, λ is the vector of parameters of the distribution q.
As shown in (1), the lower bound is obtained by first multiplying and then dividing by q(z|λ), and
then applying Jensen’s inequality by using concavity of log. The approximate posterior q(z|λ) is
obtained by maximizing the lower bound with respect to λ.

log p(y) = log

∫
q(z|λ)

p(y, z)

q(z|λ)
dz ≥ max

λ
Eq(z|λ)

[
log

p(y, z)

q(z|λ)

]
:= L(λ). (1)

Unfortunately, the lower bound may not always be easy to optimize, e.g., some terms in the lower
bound might be intractable or might admit a form that is not easy to optimize. In addition, the
optimization can be slow when N and D are large.

3 The KL Proximal-Point Algorithm for Conjugate Models

In this section, we introduce a proximal-point method based on Kullback-Leibler (KL) proximal
function and establish its relation to the existing approaches based on natural gradients [1, 5, 6].
In particular, for conditionally-conjugate exponential-family models, we show that each iteration of
our proximal-point approach is equivalent to a step along the natural gradient.

The Kullback-Leibler (KL) divergence between two distributions q(z|λ) and q(z|λ′) is defined as
follows: DKL[q(z|λ) ‖ q(z|λ′)] := Eq(z|λ)[log q(z|λ) − log q(z|λ′)]. Using the KL divergence
as the proximal term, we introduce a proximal-point algorithm that generates a sequence of λk by
solving the following subproblems:

KL Proximal-Point : λk+1 = arg max
λ
L(λ)− 1

βk
DKL[q(z|λ) ‖ q(z|λk)], (2)

given an initial value λ0 and a bounded sequence of step-size βk > 0,

One benefit of using the KL term is that it takes the geometry of the posterior distribution into
account. This fact has lead to their extensive use in both the optimization and statistics literature,
e.g., for speeding up the expectation-maximization algorithm [7, 8], for convex optimization [9], for
message-passing in graphical models [10], and for approximate Bayesian inference [11, 12, 13].

Relationship to the methods that use natural gradients: An alternative approach to incorporate
the geometry of the posterior distribution is to use natural gradients [6, 5, 1]. We now establish its
relationship to our approach. The natural gradient can be interpreted as finding a descent direction
that ensures a fixed amount of change in the distribution. For variational inference, this is equivalent
to the following [1, 14]:

arg max
∆λ
L(λk + ∆λ), s.t. DsymKL [q(z|λk + ∆λ) ‖ q(z|λk)] ≤ ε, (3)
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where DsymKL is the symmetric KL divergence. It appears that the proximal-point subproblem (2) is
related to a Lagrangian of the above optimization. In fact, as we show below, the two problems are
equivalent for conditionally conjugate exponential-family models.

We consider the set-up described in [15], which is a bit more general than that of [1]. Consider a
Bayesian network with nodes zi and a joint distribution

∏
i p(zi|pai) where pai are the parents of

zi. We assume that each factor is an exponential-family distribution defined as follows:

p(zi|pai) := hi(zi) exp
[
ηTi (pai)Ti(zi)−Ai(ηi)

]
, (4)

where ηi is the natural parameter, Ti(zi) is the sufficient statistics, Ai(ηi) is the partition function
and hi(zi) is the base measure. We seek a factorized approximation shown in (5), where each zi
belongs to the same exponential-family distribution as the joint distribution. The parameters of this
distribution are denoted by λi to differentiate them from the joint-distribution parameters ηi. Also
note that the subscript refers to the factor i, not to the iteration.

q(z|λ) =
∏
i

qi(zi|λi), where qi(zi) := hi(z) exp
[
λTi Ti(zi)−Ai(λi)

]
. (5)

For this model, we show the following equivalence between a gradient-descent method based on
natural gradients and our proximal-point approach. The proof is given in the supplementary material.
Theorem 1. For the model shown in (4) and the posterior approximation shown in (5), the sequence
λk generated by the proximal-point algorithm of (2) is equal to the one obtained using gradient-
descent along the natural gradient with step lengths βk/(1 + βk).

Proof of convergence : Convergence of the proximal-point algorithm shown in (2) is proved in
[8]. We give a summary of the results here. We assume βk = 1, however the proof holds for any
bounded sequence of βk. Let the space of all λ be denoted by S. Define the set S0 := {λ ∈ S :
L(λ) ≥ L(λ0)}. Then, ‖λk+1 − λk‖ → 0 under the following conditions:

(A) Maximum of L exist and the gradient of L is continuous and defined in S0.
(B) The KL divergence and its gradient are continuous and defined in S0 × S0.
(C) DKL[q(z|λ) ‖ q(z|λ′)] = 0 only when λ′ = λ.

In our case, the conditions (A) and (B) are either assumed or satisfied, and the condition (C) can be
ensured by choosing an appropriate parameterization of q.

4 The KL Proximal-Gradient Algorithm for Non-conjugate Models

The proximal-point algorithm of (2) might be difficult to optimize for non-conjugate models, e.g.,
due to the non-conjugate factors. In this section, we present an algorithm based on the proximal-
gradient framework where we first split the objective function into “difficult” and “easy” terms, and
then, to simplify the optimization, linearize the difficult term. See [16] for a good review of proximal
methods for machine learning.

We split the ratio p(y, z)/q(z|λ) ≡ c p̃d(z|λ)p̃e(z|λ), where p̃d contains all factors that make the
optimization difficult, and p̃e contains the rest (c is a constant). This results in the following split:

L(λ) = Eq(z|λ)

[
log

p(y, z|θ)

q(z|λ)

]
:= Eq(z|λ)[log p̃d(z|λ)]︸ ︷︷ ︸

f(λ)

+Eq(z|λ)[log p̃e(z|λ)]︸ ︷︷ ︸
h(λ)

+ log c, (6)

Note that p̃d and p̃e can be un-normalized factors in the distribution. In the worst case, we can set
p̃e(z|λ) ≡ 1 and take the rest as p̃d(z|λ). We give an example of the split in the next section.

The main idea is to linearize the difficult term f such that the resulting problem admits a simple
form. Specifically, we use a proximal-gradient algorithm that solves the following sequence of
subproblems to maximize L as shown below. Here,5f(λk) is the gradient of f at λk.

KL Proximal-Gradient:λk+1 = arg max
λ

λT 5 f(λk) + h(λ)− 1

βk
DKL[q(z|λ) ‖ q(z|λk)]. (7)
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Note that our linear approximation is equivalent to the one used in gradient descent. Also, the
approximation is tight at λk. Therefore, it does not introduce any error in the optimization, rather it
only acts as a surrogate to take the next step. Existing variational methods have used approximations
such as ours, e.g., see [17, 18, 19]. Most of these methods first approximate the log p̃d(z|λ) term
by using a linear or quadratic approximation and then compute the expectation. As a result the
approximation is not tight and can result in a bad performance [20]. In contrast, our approximation
is applied directly to E[log p̃d(z|λ)] and therefore is tight at λk.

The convergence of our approach is covered under the results shown in [21]; they prove convergence
of an algorithm more general algorithm than ours. Below, we summarize the results. As before, we
assume that the maximum exists and L is continuous. We make three additional assumptions. First,
the gradient of f is L-Lipschitz continuous in S, i.e., ||5f(λ)−5f(λ′)|| ≤ L||λ−λ′||, ∀λ,λ′ ∈
S. Second, the function h is concave. Third, there exists an α > 0 such that,

(λk+1 − λk)T 51 DKL[q(z|λk+1) ‖ q(z|λk)] ≥ α‖λk+1 − λk‖2, (8)
where51 denotes the gradient with respect to the first argument. Under these conditions, ‖λk+1 −
λk‖ → 0 when 0 < βk < α/L. The choice of constant α is also discussed in [21]. Note that
even though h is required to be concave, f could be non-convex. The lower bound usually contains
concave terms, e.g., in the entropy term. In the worst case when there are no concave terms, we can
simply choose h ≡ 0.

5 Examples of KL Proximal-Gradient Variational Inference

In this section, we show a few examples where the subproblem (7) has a closed-form solution.

Generalized linear model : We consider the generalized linear model shown in (9). Here, y is
the output vector (of length N ) whose n’th entry is equal to yn, whereas X is an N × D feature
matrix that contains feature vectors xTn as rows. The weight vector z is a Gaussian with mean µ and
covariance Σ. To obtain the probability of yn, the linear predictor xTnz is passed through p(yn|·).

p(y, z) :=

N∏
n=1

p(yn|xTnz)N (z|µ,Σ). (9)

We restrict the posterior distribution to be a Gaussian q(z|λ) = N (z|m,V) with mean m and
covariance V, therefore λ := {m,V}. For this posterior family, the non-Gaussian terms p(yn|xTnz)
are difficult to handle, while the Gaussian term N (z|µ,Σ) is easy because it is conjugate to q.
Therefore, we set p̃e(z|λ) ≡ N (z|µ,Σ)/N (z|m,V) and let the rest of the terms go in p̃d.

By substituting in (6) and using the definition of the KL divergence, we get the lower bound shown
below in (10). The first term is the function f that will be linearized, and the second term is the
function h.

L(m,V) :=

N∑
n=1

Eq(z|λ)[log p(yn|xTnz)]︸ ︷︷ ︸
f(m,V )

+Eq(z|λ)

[
log
N (z|µ,Σ)

N (z|m,V)

]
︸ ︷︷ ︸

h(m,V )

. (10)

For linearization, we compute the gradient of f using the chain rule. Denote fn(m̃n, ṽn) :=
Eq(z|λ)[log p(yn|xTnz)] where m̃n := xTnm and ṽn := xTnVxn. Gradients of f w.r.t. m and V
can then be expressed in terms of gradients of fn w.r.t. m̃n and ṽn:

5mf(m,V) =

N∑
n=1

xn 5m̃n
fn(m̃n, ṽn), 5Vf(m,V) =

N∑
n=1

xnxTn 5ṽn fn(m̃n, ṽn), (11)

For notational simplicity, we denote the gradient of fn at m̃nk := xTnmk and ṽnk := xTnVkxn by,
αnk := −5m̃n

fn(m̃nk, ṽnk), γnk := −25ṽn fn(m̃nk, ṽnk). (12)
Using (11) and (12), we get the following linear approximation of f :

f(m,V) ≈ λT 5 f(λk) := mT [5mf(mk,Vk)] + Tr [V {5Vf(mk,Vk)}] (13)

= −
N∑
n=1

[
αnk (xTnm) + 1

2γnk (xTnVxn)
]
. (14)
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Substituting the above in (7), we get the following subproblem in the k’th iteration:

(mk+1,Vk+1) = arg max
m,V �0

−
N∑
n=1

[
αnk (xTnm) + 1

2γnk (xTnVxn)
]

+ Eq(z|λ)

[
N (z|µ,Σ)

N (z|m,V)

]
− 1

βk
DKL [N (z|m,V)||N (z|mk,Vk)] , (15)

Taking the gradient w.r.t. m and V and setting it to zero, we get the following closed-form solutions
(details are given in the supplementary material):

V−1
k+1 = rkV

−1
k + (1− rk)

[
Σ−1 + XT diag(γk)X

]
, (16)

mk+1 =
[
(1− rk)Σ−1 + rkV

−1
k

]−1
[
(1− rk)(Σ−1µ−XTαk) + rkV

−1
k mk

]
, (17)

where rk := 1/(1 + βk) and αk and γk are vectors of αnk and γnk respectively, for all k.

Computationally efficient updates : Even though the updates are available in closed form, they are
not efficient when dimensionality D is large. In such a case, an explicit computation of V is costly
because the resulting D ×D matrix is extremely large. We now derive efficient updates that avoids
an explicit computation of V.

Our derivation involves two key steps. The first step is to show that Vk+1 can be parameterized by
γk. Specifically, if we initialize V0 = Σ, then we can show that:

Vk+1 =
[
Σ−1 + XT diag(γ̃k+1)X

]−1

, where γ̃k+1 = rkγ̃k + (1− rk)γk. (18)

with γ̃0 = γ0. A detailed derivation is given in the supplementary material.

The second key step is to express the updates in terms of m̃n and ṽn. For this purpose, we define
some new quantities. Let m̃ be a vector whose n’th entry is m̃n. Similarly, let ṽ be the vector of ṽn
for all n. Denote the corresponding vectors in the k’th iteration by m̃k and ṽk, respectively. Finally,
define µ̃ = Xµ and Σ̃ = XΣXT .

Now, by using the fact that m̃ = Xm and ṽ = diag(XVXT ) and by applying the Woodbury matrix
identity, we can express the updates in terms of m̃ and ṽ, as shown below (a detailed derivation is
given in the supplementary material):

m̃k+1 = m̃k + (1− rk)(I− Σ̃B−1
k )(µ̃− m̃k − Σ̃αk), where Bk := Σ̃ + [diag(rkγ̃k)]−1,

ṽk+1 = diag(Σ̃)− diag(Σ̃A−1
k Σ̃), where Ak := Σ̃ + [diag(γ̃k)]−1. (19)

Note that these updates depend on µ̃, Σ̃,αk, and γk (whose size only depends on N and is inde-
pendent ofD). Most importantly, these updates avoid an explicit computation of V and only require
storing m̃k and ṽk, both of which scale linearly with N .

Also note that the matrix Ak and Bk differ only slightly and we can reduce computation by using
Ak in place of Bk. In our experiments, this does not create any convergence issues.

To assess convergence, we can use the optimality condition. By taking the norm of the derivative of
L at mk+1 and Vk+1 and simplifying, we get the following criteria: ‖µ̃ − m̃k+1 − Σ̃αk+1‖22 +

Tr[Σ̃
{

diag(γ̃k − γk+1 − 1)
}

Σ̃] ≤ ε, for some ε > 0 (derivation is in the supplementary material).

Linear-Basis Function Model and Gaussian Process : The algorithm presented above can be
extended to linear-basis function models by using the weight-space view presented in [22]. Consider
a non-linear basis function φ(x) that maps a D-dimensional feature vector into an N -dimensional
feature space. The generalized linear model of (9) is extended to a linear basis function model by
replacing xTnz with the latent function g(x) := φ(x)T z. The Gaussian prior on z then translates
to a kernel function κ(x,x′) := φ(x)TΣφ(x) and a mean function µ̃(x) := φ(x)Tµ in the latent
function space. Given input vectors xn, we define the kernel matrix Σ̃ whose (i, j)’th entry is equal
to κ(xi,xj) and the mean vector µ̃ whose i’th entry is µ̃(xi).

Assuming a Gaussian posterior distribution over the latent function g(x), we can compute its mean
m̃(x) and variance ṽ(x) using the proximal-gradient algorithm. We define m̃ to be the vector of
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Algorithm 1 Proximal-gradient algorithm for linear basis function models and Gaussian process

Given: Training data (y,X), test data x∗, kernel mean µ̃, covariance Σ̃, step-size sequence rk,
and threshold ε.
Initialize: m̃0 ← µ̃, ṽ0 ← diag(Σ̃) and γ̃0 ← δ11.
repeat

For all n in parallel: αnk ←5m̃n
fn(m̃nk, ṽnk) and γnk ←5ṽnfn(m̃nk, ṽnk).

Update m̃k and ṽk using (19).
γ̃k+1 ← rkγ̃k + (1− rk)γk.

until ‖µ̃− m̃k − Σ̃αk‖+ Tr[Σ̃ diag(γ̃k − γk+1 − 1)Σ̃] > ε.
Predict test inputs x∗ using (20).

m̃(xn) for all n and similarly ṽ to be the vector of all ṽ(xn). Following the same derivation as the
previous section, we can show that the updates of (19) give us the posterior mean m̃ and variance ṽ.
These updates are the kernalized version of (16) and (17).

For prediction, we only need the converged value of αk and γk, denoted by α∗ and γ∗, respectively.
Given a new input x∗, define κ∗∗ := κ(x∗,x∗) and κ∗ to be a vector whose n’th entry is equal to
κ(xn,x∗). The predictive mean and variance can be computed as shown below:

ṽ(x∗) = κ∗∗ − κT∗ [Σ̃ + (diag(γ̃∗))−1]−1κ∗ , m̃(x∗) = µ̃∗ − κT∗α
∗ (20)

A pseudo-code is given in Algorithm 1. Here, we initialize γ̃ to a small constant δ1, otherwise
solving the first equation might be ill-conditioned.

These updates also work for the Gaussian process (GP) models with a kernel k(x,x′) and mean
function µ̃(x), and for many other latent Gaussian models such as matrix factorization models.

6 Experiments and Results

We now present some results on the real data. Our goal is to show that our approach gives compa-
rable results to existing methods and is easy to implement. We also show that, in some cases, our
method is significantly faster than the alternatives due to the kernel trick.

We show results on three models: Bayesian logistic regression, GP classification with logistic like-
lihood, and GP regression with Laplace likelihood. For these likelihoods, expectations can be com-
puted (almost) exactly, for which we used the methods described in [23, 24]. We use a fixed step-size
of βk = 0.25 and 1 for logistic and Laplace likelihoods, respectively.

We consider three datasets for each model. A summary is given in Table 1. These datasets can be
found at the data repository1 of LIBSVM and UCI.

Bayesian Logistic Regression: Results for Bayesian logistic regression are shown in Table 2. We
consider two datasets. For ‘a1a’, N > D, and, for ‘Colon’, N < D. We compare our ‘proximal’
method to three other existing methods: the ‘MAP’ method which finds the mode of the penalized
log-likelihood, the ‘Mean-Field’ method where the distribution is factorized across dimensions, and
the ‘Cholesky’ method of [25]. We implemented these methods using ‘minFunc’ software by Mark
Schmidt2. We used L-BFGS for optimization. All algorithms are stopped when optimality condition
is below 10−4. We set the Gaussian prior to Σ = δI and µ = 0. To set the hyperparameter δ, we use
cross-validation for MAP, and maximum marginal-likelihood estimate for the rest of the methods.
As we compare running times as well, we use a common range of hyperparameter values for all
methods. These values are shown in Table 1.

For Bayesian methods, we report the negative of the marginal likelihood approximation (‘Neg-Log-
Lik’). This is (the negative of) the value of the lower bound at the maximum. We also report the
log-loss computed as follows:−

∑
n log p̂n/N where p̂n are the predictive probabilities of the test

data and N is the total number of test-pairs. A lower value is better and a value of 1 is equivalent
to random coin-flipping. In addition, we report the total time taken for hyperparameter selection.

1https://archive.ics.uci.edu/ml/datasets.html and http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
2Available at https://www.cs.ubc.ca/∼schmidtm/Software/minFunc.html
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Model Dataset N D %Train #Splits Hyperparameter range

LogReg
a1a 32,561 123 5% 1 δ = logspace(-3,1,30)
Colon 62 2000 50% 10 δ = logspace(0,6,30)

GP class
Ionosphere 351 34 50% 10 for all datasets
Sonar 208 60 50% 10 log(l) = linspace(-1,6,15)
USPS-3vs5 1,540 256 50% 5 log(σ) = linspace(-1,6,15)

GP reg
Housing 506 13 50% 10 log(l) = linspace(-1,6,15)
Triazines 186 60 50% 10 log(σ) = linspace(-1,6,15)
Space ga 3,106 6 50% 1 log(b) = linspace(-5,1,2)

Table 1: A list of models and datasets. %Train is the % of training data. The last column shows the
hyperparameters values (‘linspace’ and ‘logspace’ refer to Matlab commands).

Dataset Methods Neg-Log-Lik Log Loss Time

a1a

MAP — 0.499 27s
Mean-Field 792.8 0.505 21s
Cholesky 590.1 0.488 12m
Proximal 590.1 0.488 7m

Colon
MAP — 0.78 (0.01) 7s (0.00)
Mean-Field 18.35 (0.11) 0.78 (0.01) 15m (0.04)
Proximal 15.82 (0.13) 0.70 (0.01) 18m (0.14)

Table 2: A summary of the results obtained on Bayesian logistic regression. In all columns, a lower
values implies better performance.

For MAP, this is the total cross-validation time, whereas for Bayesian methods it is the time taken
to compute ‘Neg-Log-Lik’ for all hyperparameters values over the whole range.

We summarize these results in Table 2. For all columns, a lower value is better. We see that for ‘a1a’,
fully Bayesian methods perform slightly better than MAP. More importantly, the Proximal method
is faster than the Cholesky method but obtains the same error and marginal likelihood estimate. For
the Proximal method, we use updates of (17) and (16) because D � N , but even in this scenario,
the Cholesky method is slow due to expensive line-search for a large number of parameters.

For the ‘Colon’ dataset, we use the update (19) for the Proximal method. We do not compare to
the Cholesky method because it is too slow for the large datasets. In Table 2, we see that, our
implementation is as fast as the Mean-Field method but performs significantly better.

Overall, with the Proximal method, we achieve the same results as the Cholesky method but take less
time. In some cases, we can also match the running time of the Mean-Field method. Note that the
Mean-Field method does not give bad predictions and the minimum value of log-loss are comparable
to our approach. However, as Neg-Log-Lik values for the Mean-Field method are inaccurate, it ends
up choosing a bad hyperparameter value. This is expected as the Mean-Field method makes an
extreme approximation. Therefore, cross-validation is more appropriate for the Mean-Field method.

Gaussian process classification and regression: We compare the Proximal method to expectation
propagation (EP) and Laplace approximation. We use the GPML toolbox for this comparison. We
used a squared-exponential kernel for the Gaussian process with two scale parameters σ and l (as
defined in GPML toolbox). We do a grid search over these hyperparameters. The grid values are
given in Table 1. We report the log-loss and running time for each method.

The left plot in Figure 1 shows the log-loss for GP classification on USPS 3vs5 dataset, where the
Proximal method shows very similar behaviour to EP. These results are summarized in Table 3. We
see that our method performs similar to EP, sometimes a bit better. The running times of EP and
the Proximal method are also comparable. The advantage of our approach is that it is easier to
implement compared to EP and it is also numerically robust. The predictive probabilities obtained
with EP and the Proximal method for ’USPS 3vs5’ dataset are shown in the right plot of Figure
1. The horizontal axis shows the test examples in an ascending order; the examples are sorted
according to their predictive probabilities obtained with EP. The probabilities themselves are shown
in the y-axis. A higher value implies a better performance, therefore the Proximal method gives
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Figure 1: In the left figure, the top row shows the log-loss and the bottom row shows the running time
in seconds for the ‘USPS 3vs5’ dataset. In each plot, the minimum value of the log-loss is shown
with a black circle. The right figure shows the predictive probabilities obtained with EP and the
Proximal method. The horizontal axis shows the test examples in an ascending order; the examples
are sorted according to their predictive probabilities obtained with EP. The probabilities themselves
are shown in the y-axis. A higher value implies a better performance, therefore the Proximal method
gives estimates better than EP.

Log Loss Time (s is sec, m is min, h is hr)
Data Laplace EP Proximal Laplace EP Proximal
Ionosphere .285 (.002) .234 (.002) .230 (.002) 10s (.3) 3.8m (.10) 3.6m (.10)
Sonar .410 (.002) .341 (.003) .317 (.004) 4s (.01) 45s (.01) 63s (.13)
USPS-3vs5 .101 (.002) .065 (.002) .055 (.003) 1m (.06) 1h (.06) 1h (.02)
Housing 1.03 (.004) .300 (.006) .310 (.009) .36m (.00) 25m (.65) 61m (1.8)
Triazines 1.35 (.006) 1.36 (.006) 1.35 (.006) 10s (.10) 8m (.04) 14m (.30)
Space ga 1.01 (—) .767 (—) .742 (—) 2m (—) 5h (—) 11h (—)

Table 3: Results for the GP classification using a logistic likelihood and the GP regression using a
Laplace likelihood. For all rows, a lower value is better.

estimates better than EP. The improvement in the performance is due to the numerical error in the
likelihood implementation. For the Proximal method, we use the method of [23], which is quite
accurate. Designing such accurate likelihood approximations for EP is challenging.

7 Discussion and Future Work

In this paper, we have proposed a proximal framework that uses the KL proximal term to take
the geometry of the posterior distribution into account. We established the equivalence between our
proximal-point algorithm and natural-gradient methods. We proposed a proximal-gradient algorithm
that exploits the structure of the bound to simplify the optimization. An important future direction
is to apply stochastic approximations to approximate gradients. This extension is discussed in [21].
It is also important to design a line-search method to set the step sizes. In addition, our proximal
framework can also be used for distributed optimization in variational inference [26, 11].
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