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Abstract

The development of accurate models and effi-
cient algorithms for the analysis of multivari-
ate categorical data are important and long-
standing problems in machine learning and
computational statistics. In this paper, we
focus on modeling categorical data using La-
tent Gaussian Models (LGMs). We propose
a novel stick-breaking likelihood function for
categorical LGMs that exploits accurate lin-
ear and quadratic bounds on the logistic
log-partition function, leading to an effective
variational inference and learning framework.
We thoroughly compare our approach to ex-
isting algorithms for multinomial logit/probit
likelihoods on several problems, including in-
ference in multinomial Gaussian process clas-
sification and learning in latent factor mod-
els. Our extensive comparisons demonstrate
that our stick-breaking model effectively cap-
tures correlation in discrete data and is well
suited for the analysis of categorical data.

1 Introduction

The development of accurate models and effi-
cient learning and inference algorithms for high-
dimensional, correlated, multivariate categorical data
are important and long-standing problems in machine
learning and computational statistics. They have ap-
plications for data analysis in a wide variety of ar-
eas such as discrete choice modeling in econometrics,
analysis of survey responses in social science, medical
diagnostics, and recommender systems.

In this paper, we focus on the class of Latent Gaus-
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sian Models (LGMs), which model data distributions
using Gaussian latent variables. LGMs include pop-
ular models such as factor analysis and probabilis-
tic principal components analysis for continuous data
(Knott and Bartholomew, 1999; Tipping and Bishop,
1999), binary and multinomial factor analysis for dis-
crete data (Wedel and Kamakura, 2001; Collins et al.,
2002; Mohamed et al., 2008; Khan et al., 2010), and
Gaussian process regression and classification (Nick-
isch and Rasmussen, 2008). LGMs allow for a prin-
cipled handling of missing data and can be used for
dimensionality reduction, data prediction and visual-
ization.

In the case of LGMs for categorical data, the two most
widely used likelihoods are the multinomial-probit,
and the multinomial-logit or softmax. The key diffi-
culty with the LGM model class is that the latent vari-
ables must be integrated away in order to obtain the
marginal likelihood needed to learn the model param-
eters. This integration can be performed analytically
in Gaussian-likelihood LGMs such as factor analysis
because the model is jointly Gaussian in the latent fac-
tors and the observed variables (Bishop, 2006). LGMs
with logit and probit-based likelihoods lack this prop-
erty, resulting in intractable integrals for the marginal
likelihood.

The main contribution of this paper is the develop-
ment of a novel stick-breaking likelihood function for
categorical data. The stick-breaking likelihood func-
tion is an alternative generalization of the binary logit
likelihood to the case of categorical data. It is more
amenable to the application of variational bounds
than the traditional multinomial-logit construction,
and is specifically designed to exploit recently pro-
posed linear and quadratic bounds on the logistic-log-
partition function developed by Marlin et al. (2011).
These bounds are much more accurate than varia-
tional quadratic bounds used in previous work. We
thoroughly compare our proposed framework to ex-
isting algorithms for both multinomial-probit and
multinomial-logit likelihoods on several problems in-



A Stick-Breaking Likelihood for Categorical Data Analysis with Latent Gaussian Models

cluding inference in multinomial Gaussian process
classification and learning in categorical factor mod-
els. Our results demonstrate that the proposed stick-
breaking model effectively captures correlation in dis-
crete data and is well suited for the analysis of cate-
gorical data.

2 Categorical Latent Gaussian Models

For a generic latent Gaussian model, we consider N
data instances, with a visible data vector yn and
corresponding latent vector by zn, for the n’th ob-
servation. In general, yn and zn will have dimen-
sions D and L, respectively. Each element of yn, de-
noted by ydn, can take values from a finite discrete
set Sd = {C0, C1, C2, . . . , CKd

} where Ck is the k’th
category. For simplicity, we assume that Kd = K,∀d.

In LGMs, the latent variables zn follow a Gaussian
distribution with mean µ and covariance matrix Σ as
shown in Eq. 1. The probability of each categori-
cal variable ydn is parameterized in terms of the lin-
ear projection ηdn as seen in Eqs. 2 and 3. Here,
Wd ∈ R(K+1)×L is the factor loading matrix and
w0d ∈ RK+1 is the offset vector, implying that ηdn ∈
RK+1. The likelihood in Eq. 3 factorizes over data
dimensions d. We consider the problem of choosing a
parameterization for each likelihood term p(ydn|ηdn)
in the next section.

p(zn|θ) = N (zn|µ,Σ) (1)

ηdn = Wdzn + w0d (2)

p(yn|zn) =

D∏
d=1

p(ydn|ηdn). (3)

We denote the set of parameters by θ =
{µ,Σ,W,w0}, where W and w0 are the sets con-
taining Wd and w0d for all dimensions. To make the
model identifiable, we set the last row of Wd and last
element of w0d to zero. Also, the prior mean µ and
the offset w0 are interchangeable in all the models so
we use the mean only.

Different models for categorical data can be obtained
by restricting the above generic model in different
ways. We obtain the categorical factor analysis (cFA)
model by assuming that L ≤ DK and Σ is the identity
matrix, while W and µ are unrestricted. Conversely,
we obtain the categorical latent Gaussian graphical
model (cLGGM) by assuming that L = DK and W
is the identity matrix, while µ and Σ are unrestricted.
We obtain a multi-class Gaussian process classification
(mGPC) model by restricting N = 1 and W to be the
identity matrix, and specifying µ and Σ using a kernel
function that depends on features. In the mGPC case,
D is the number of data points and the set of param-

eters consists of the hyperparameters of the mean and
covariance function.

3 Categorical Parameterizations

There are many choices available for the categorical
distribution p(y|η) in Eq. 3. We review two pop-
ular parameterizations: the multinomial-probit and
multinomial-logit, and then introduce a new stick-
breaking parameterization and discuss its properties.

The form for the multinomial-probit function is given
in Eq. 8 and makes use of auxiliary variables uj ∼
N (uj |ηj , 1). The probability of each category is de-
fined through an integral over the region Rk where
auxiliary variable uk > uj for all j 6= k.

p(y = Ck|η) =

∫
Rk

K∏
j=0

p(uj |ηj)du (8)

p(y = Ck|η) =
eηk∑K
j=0 e

ηj
= exp [ηk − lse(η)] (9)

The form of the multinomial-logit function is given
in Eq. 9. It is defined using the log-sum-exp (LSE)
function lse(η) = log

∑
j exp(ηj), and is the natural

generalization of the binary logit function to three or
more categories.

The standard multinomial-logit construction is not the
only way to extend the logit function to the case of
multiple categories. We propose an alternative gener-
alization of the logit function, which we refer to as the
stick-breaking parameterization. The stick-breaking
process is part of the more general framework of ran-
dom allocation processes, and is very closely associ-
ated with Bayesian non-parametric methods, where it
is used in constructive definitions of the Dirichlet pro-
cess, for example Sethuraman (1994). In our stick-
breaking parameterization, we use a logit function to
model the probability of the first category as σ(η0)
where σ(x) = 1/(1 + exp(−x)). This is the first piece
of the stick. The length of the remainder of the stick is
(1− σ(η0)). We can model the probability of the sec-
ond category as a fraction σ(η1) of the remainder of
the stick left after removing σ(η0). We can continue in
this way until we have defined all the stick lengths up
to K. The last category then receives the remaining
stick length, as seen below.

p(y = C0|η) = σ(η0)

p(y = Ck|η) =
∏

j≤k−1

(1− σ(ηj))σ(ηk), 0 < k < K

p(y = CK |η) =

K−1∏
j=1

(1− σ(ηj)) (10)
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L(θ) =

N∑
n=1

log

∫
z

p(z|θ)p(yn|z)dz =

N∑
n=1

log

∫
z

q(z|γn)
p(z|θ)p(yn|z)

q(z|γn)
dz (4)

L(θ) ≥ LJ(θ,γ) :=

N∑
n=1

−
∫
z

q(z|γn) log
q(z|γn)

p(z|θ)
dz +

∫
z

q(z|γn) log p(yn|z)dz (5)

=

N∑
n=1

−DKL [q(z|γn)||p(z|θ)] +

D∑
d=1

Eq(η|γ̃dn)
[log p(ydn|η)] (6)

DKL(qn(z|γn)||p(z|θ)) =
1

2

[
− log |VnΣ−1|+ tr(VnΣ−1) + (mn − µ)TΣ−1(mn − µ)− L

]
(7)

The probabilities (stick lengths) are all positive and
sum to one; they thus define a valid probability dis-
tribution. We can also use a different function for
σ(x) such as the probit function, but we use the logit
function since it allows us to use efficient variational
bounds. The stick-breaking parameterization can be
written more compactly as shown in Eq. 11.

p(y = Ck|η) = exp[ηk −
∑
j≤k

log(1 + eηj )] (11)

Models for multinomial regression have wide cover-
age in the statistics and psychology literature. Both
the multinomial-probit and multinomial-logit links are
used extensively (Albert and Chib, 1993; Holmes and
Held, 2006; Vijverberg, 2000). These link functions do
not assume any ordering of categories and it is under-
stood that these parameterizations give similar per-
formance and qualitative conclusions. On the other
hand, inference with these link functions is difficult.

Our stick-breaking construction simplifies the infer-
ence by constructing a categorical likelihood using
simpler binary likelihood functions as shown in Eq.
10. Each ηk can be interpreted as the log-ratio:
ηk = log[p(y = Ck|η)/p(y > Ck|η)]. This implies
that, given a particular ordering of categories, each ηk
defines a decision boundary in the latent space z, that
separates the k’th category from all categories j > k.
If such a separation is difficult to attain given an or-
dering of categories, the stick-breaking likelihood may
not give good predictions. In practice, such separabil-
ity is easier to achieve in latent variable models such as
ours. Our results on real-world datasets confirm this.

The stick-breaking parameterization also has impor-
tant advantages over the multinomial-logit model
in terms of variational approximations. The
multinomial-logit parameterization requires bounding
the lse(η) function and, at present, it is not known how
to obtain tight bounds on this function with more than
two categories (Bouchard, 2007; Khan et al., 2010). As
we can see in Eq. 11, the stick-breaking parameteriza-
tion only depends on functions of the form log(1+eηj ),

known as the logistic log-partition function. In con-
trast to the multinomial-logit case, extremely accurate
piecewise-linear and quadratic bounds are available for
the logistic-log-partition function (Marlin et al., 2011).

4 Variational Learning and the
Stick-Breaking Parameterization

Parameter estimation is always problematic in LGMs
that use non-Gaussian likelihoods due to the fact that
the marginal likelihood contains intractable integrals.
In this section, we derive a tractable variational lower
bound to the marginal likelihood for categorical LGMs
using the stick-breaking parameterization, exploiting
the availability of very tight bounds on the logistic-
log-partition function.

We begin with the intractable log marginal likelihood
L(θ) in Eq. 4 and introduce a variational posterior
distribution q(z|γn) for each n. We use a Gaussian
posterior with mean mn and covariance Vn. The full
set of variational parameters is thus γn = {mn,Vn}
and we use γ to denote the set of all γn.

As log is a concave function, we obtain a lower
bound LJ(θ,γ) using Jensen’s inequality, given by
Eq. 5. The first term is simply the Kullback−Leibler
(KL) divergence from the variational Gaussian pos-
terior q(z|mn,Vn) to the Gaussian prior distribution
p(z|µ,Σ), and has a closed-form expression given by
Eq. 7. In the second term, we substitute the likelihood
definition from Eq. 3 and apply a change of variable
from z to η to get Eq. 6. The new expectation is
with respect to q(η|γ̃dn), where γ̃dn = {m̃dn, Ṽdn},
m̃dn = Wdmn + w0d, and Ṽdn = WdVnWT

d .

The lower bound LJ(θ,γ) is still intractable as the
expectation of log p(ydn|η) is not available in closed
form. To derive a tractable lower bound, we make use
of piecewise linear/quadratic bounds for this expecta-
tion. For simplicity, we suppress the dependence on d
and n and consider the log-likelihood of a scalar obser-
vation y given a predictor η ∼ q(η|γ̃) = N (η|m̃, Ṽ)
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with γ̃ = {m̃, Ṽ}. The log likelihood is shown in Eq.
12. We see that the expectation of this term with
respect to a Gaussian distribution is intractable due
to the presence of log(1 + exp(ηj)) terms. We use
the piecewise linear/quadratic upper bound of Mar-
lin et al. (2011) to obtain a lower bound to the log-
likelihood in Eq. 13.

log p(y = Ck|η) = ηk −
∑
j≤k

log(1 + eηj ) (12)

≥ ηk −
∑
j≤k

R∑
r=1

I(tr−1,tr)(ηj)[arη
2
j + brηj + cr] (13)

Here ar, br, cr are the parameters of r’th quadratic
piece in the interval (tr−1, tr), R is the total number
of pieces, and I(tr−1,tr)(x) = 1 if x ∈ (tr−1, tr) and 0
otherwise. We denote the parameters of the piecewise
bound by α which can be computed beforehand by
solving an optimization problem as shown by Marlin
et al. (2011). The expectation of the lower bound with
respect to a Gaussian is tractable as the expectation
of each piece is just the expectation with respect to a
truncated Gaussian distribution as shown in Eq. 14.
We denote this lower bound by B(y, γ̃,α). Note that
the bound only depends on the diagonal elements of
Ṽ. We denote these by ṽ.

Eq(η|γ̃)[log p(y = Ck|η)] ≥ B(y, γ̃,α) (14)

:= m̃k −
∑
j≤k

R∑
r=1

∫ tr

tr−1

(arx
2 + brx+ cr)N (x|m̃j , ṽj)dx

An important property of the piecewise bound is that
its maximum error is bounded and can be driven to
zero by increasing the number of pieces. This means
that the lower bound in Eq. 14 can be made arbitrarily
tight by increasing the number of pieces.

4.1 A Generalized EM Algorithm

We substitute Eq. 14 into Eq. 6 to obtain a final,
tractable lower bound on LJ(θ,γ), which we denote
by LJ(θ,γ). To learn the parameters, we optimize
the lower bound with respect to the variational pos-
terior parameters γ and model parameters θ. Some
of the updates are not available in closed form and
require numerical optimization, resulting in a general-
ized expectation-maximization algorithm. The gener-
alized E-step requires numerically optimizing the vari-
ational posterior means and covariances. The general-
ized M-step consists of a mix of closed-form updates
and numerical optimization. To derive the required
gradients, we need the gradient of B(ydn, γ̃dn,α) with
respect to m̃dn and ṽdn, which are also available
in closed-form (see Marlin et al. (2011) for details).

Algorithm 1 Generalized EM Algorithm for SB-LGM

E-Step:

∂LJ
∂mn

← −Σ−1(mn − µ) +

D∑
d=1

WT
d gdn

∂LJ
∂Vn

← 1

2

(
V−1n −Σ−1

)
+

D∑
d=1

WT
d diag(hdn)Wd

M-Step:

µ← 1

N

N∑
n=1

mn

Σ← 1

N

N∑
n=1

Vn + (mn − µ)(mn − µ)T

∂LJ
∂Wd

←
N∑
n=1

gdnmT
n + 2Wdiag(hdn)V

We denote these gradients by gdn := ∂B/∂m̃dn and
hdn := ∂B/∂ṽdn.

We give the gradients or closed form updates as ap-
propriate in Algorithm 1. We use limited memory
BFGS to perform the updates that require numeri-
cal optimization. The piecewise bound parameters α
are computed in advance and are fixed during learning
and inference.

4.2 Computational Complexity

The computation of gdn and hdn is O(DKNR). To
compute the sum over d in the E and M-steps costs
O(NDKL2) and inversion costs O(NL3). The total
computational complexity of one iteration of our algo-
rithm is O(DKNR+ (DKL2 + L3)N). In the special
case of multi-class Gaussian process classification, we
have L = DK and N = 1 giving us complexity in
O(D3K3) and a straightforward implementation will
not be efficient. However, optimization can be made
simpler by reparameterizing the covariance matrix as
suggested in Opper and Archambeau (2009).

5 Related Work

There is a great deal of related work on learning stan-
dard multinomial-probit and multinomial-logit LGMs.
Moustaki and Knott (2000) describe an EM algo-
rithm for learning in exponential family factor anal-
ysis (EFA). The integration of the latent variables is
achieved by quadrature, limiting the applicability of
this approach. Collins et al. (2002) describe an al-
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ternative method for learning EFA models based on
an alternating optimization of the latent variables and
parameters. This approach does not take into account
the uncertainty in the latent variables and may not
perform well in some cases (Khan et al., 2010). In addi-
tion, these estimation methods are not easily adapted
to handling missing data, suffer from overfitting and
can exhibit sensitivity to regularization.

Fully Bayesian approaches have been explored to over-
come the above limitations. Albert and Chib (1993)
describe Bayesian methods based on Gibbs sampling,
but these do not scale to large-scale applications. Mo-
hamed et al. (2008) describe a fully Bayesian ap-
proach for the exponential family factor analysis model
based on Hybrid Monte Carlo. This approach can
be quite accurate, but the sampler requires careful
tuning. Holmes and Held (2006), Scott (2011), and
Frühwirth-Schnatter and Frühwirth (2010) describe
MCMC samplers using auxiliary variables for infer-
ence in multinomial-logit regression models. These
methods generally tend to be slower than determin-
istic approaches, and it is usually difficult to assess
their convergence.

The Integrated Nested Laplace Approximation
(INLA) (Rue et al., 2009) can also be used, but
this approach is limited to six or fewer parameters
and is thus not suitable for most problems that we
consider. Multi-class expectation propagation (EP) is
described by Seeger and Jordan (2004), but has issues
that we discuss in section 7. A variational Bayesian
multinomial probit regression is described by Girolami
and Rogers (2006), and uses the auxiliary variable
representation of the probit function (Eq. 8), with a
factorial representation for the posterior distribution.
This model was shown to be effective compared to
Gibbs sampling and Laplace approximations, but the
factorial representation limits the effectiveness of the
inference procedure as we show in this paper.

Alternative local variational methods are described by
Blei and Lafferty (2006); Khan et al. (2010), Braun
and McAuliffe (2010), Bouchard (2007), and Ahmed
and Xing (2007). These approaches are easy to gener-
alize to different LGMs, and are amenable to develop-
ing efficient parameter learning algorithms. The key
disadvantage is that the error due to the local approx-
imation may result in a severe bias in the parameter
estimates, as we show next.

6 Results

We use plogit(y|θ) to refer to the exact probability of a
data vector y under the multinomial-logit LGM with
parameters θ. Similarly, we use pstick(y|θ) to refer to
the exact probability under the stick-breaking LGM.

These exact probabilities remain intractable, but for
small D we can compute them to reasonable accuracy
using a Monte Carlo approximation to the integral,
p(y|θ) =

∫
p(y|z)N (z|µ,Σ)dz, where the likelihood

is either the multinomial-logit or stick-breaking. The
MATLAB code to reproduce the results in this section
can be found online1.

6.1 Synthetic Data Experiments

We generate data from a 2D categorical Latent Gaus-
sian graphical model (cLGGM). A cLGGM is essen-
tially a factor model in which L = DK and W is the
identity matrix, while µ and Σ are unrestricted. We
assume that both dimensions have K categories, giv-
ing us K2 unique data cases. We set the true param-
eters θ∗ to µ∗ = 0 and Σ∗ = 20cov(X) + IL , where
X = [IK−1IK−1]. This choice of Σ∗ forces both dimen-
sions to take the same value, resulting in high correla-
tion. We sample 106 data cases from the logit model to
get an estimate of plogit(y|θ∗). We estimate parame-

ters θ̂ of logit and stick using this dataset. For the logit
model, we use two versions of variational EM algo-
rithms based on the Bohning bound (Khan et al., 2010)
and the Blei bound (Blei and Lafferty, 2006) respec-
tively. For the stick model, we use our proposed varia-
tional EM algorithm. We refer to these three methods
as ‘logit-Bohning’, ‘logit-Blei’, and ‘stick-PW’ respec-
tively. Note that since the data is generated from a
multinomial-logit model, there is a modeling error for
stick-PW in addition to the approximation in learning.

We first compare results for K = 4 in Fig. 1(a)

which shows the true plogit(y|θ∗) as well as plogit(y|θ̂)

for logit-blei and logit-Bohning, and pstick(y|θ̂) for
stick-PW. We see that stick-PW obtains a very close
probability distribution to the true distribution, while
other methods do not. Figure 1(b) shows results for
K = 4, 5, 6, 7, 8. Here we plot KL-divergence between
the true distribution plogit(y|θ∗) and the estimated
distributions for each method. We see that our method
consistently gives very low KL divergence values (the
values for other methods are decreasing because the
entropy of the true distribution decreases since we have
set the multiplying constant in Σ∗ to 20 for all cate-
gories).

6.2 Multi-class Gaussian process
classification

In this section, our goal is to compare the marginal
likelihood approximation and its suitability for param-
eter estimation. We consider a multi-class Gaussian
process classification (mGPC) model since the number

1www.cs.ubc.ca/∼emtiyaz/software/catLGM.html
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Figure 1: (a) Comparison of the true probability distribution to the estimated distributions on synthetic data
with 4 categories. (b) KL divergence between the true and estimated distributions for different categories.

of parameters is small, which makes it easier to inves-
tigate the approximation. We use hybrid Monte Carlo
(HMC) sampling along with annealed importance sam-
pling (AIS) to get the ‘true’ value of marginal likeli-
hood. We present results for the multinomial-logit link
function and refer to this as logit-HMC. We compare to
the multinomial probit model of Girolami and Rogers
(2006), which uses variational-Bayesian inference. For
this method, we use the MATLAB code provided by
the authors2. We refer to this as the ‘probit-VB’ ap-
proach. We also compare to a multinomial-logit model
learned using a variational EM algorithm based on
the Blei bound proposed by Blei and Lafferty (2006)
and the Bohning bound proposed in Bohning (1992).
We refer to these models as the ‘logit-Blei’ and ‘logit-
Bohning’ respectively.

We apply the mGPC model to the forensic glass data
set (available from the UCI repository) which has
D = 214 data examples, K = 6 categories, and fea-
tures x of length 8. We use 80% of the dataset for
training and the rest for testing. We set µ = 0 and use
a squared-exponential kernel, for which the (i, j)’th en-
try of Σ is defined as: Σij = −σ2 exp[− 1

2 ||xi−xj ||2/s].
To compare the marginal likelihood, we fix θ which
consists of σ and s and compute a posterior distribu-
tion (or draw samples from it), and an approximation
to the marginal likelihood using one of the methods
mentioned above. We compute the prediction error
defined as − log2 p̃(ytest|θ,ytrain,xtrain,xtest), where
(ytrain,xtrain) and (ytest,xtest) are training and test-
ing data, respectively. Here, p̃(ytest|·) is the marginal

2We corrected a bug in this code for marginal likelihood
computation. The corrected code can be found online.

predictive distribution approximated using the Monte
Carlo method.

Figure 2 shows the contour plots for all the methods
over a range of settings for the hyperparameter values
of the Gaussian process. The top row shows the neg-
ative log marginal likelihood approximation and the
bottom row shows the prediction error. The star in-
dicates the hyperparameter value at the minimum of
the negative log marginal likelihood. The first column
is the ‘true’ marginal likelihood obtained by sampling
for logit-HMC. This plot shows the expected behav-
ior of the true marginal likelihood. As we increase
σ2, we move from Gaussian-like posteriors to a pos-
terior that is highly non-Gaussian. The posterior in
the high σ2 region is effectively independent of σ2 and
thus we see contours of marginal likelihood that re-
main constant (this has also been noted by Nickisch
and Rasmussen (2008)). Importantly for model selec-
tion, there is a correspondence between the minimum
value of the marginal likelihood (or evidence) and the
region of minimum prediction error. Thus optimizing
the hyperparameters and performing model selection
by minimizing the marginal likelihood gives optimal
prediction. In our experience, tuning HMC parame-
ters is a tedious task for this model as these parame-
ters depend on θ. In addition, convergence is difficult
to assess. Both HMC and AIS samplers need to be
run for many iterations to get reasonable estimates.

Columns 2 and 3 show the log marginal likelihood and
prediction for the Bohning bound, and Blei’s bound
for the logit model. As we increase σ2, the poste-
rior becomes highly non-Gaussian and the variational
bounds strongly underestimate the marginal likelihood
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Figure 2: Comparison of methods using multi-class GP classification on the glass dataset. The top row shows the
negative log marginal likelihood approximations and the bottom row shows the prediction errors. Each column
is a different method. The first column can be considered as ground-truth.

Table 1: Performance of methods at the best parame-
ter setting (a star in Fig. 2)

.

Method s σ negLogLik predError

Logit HMC 1 2.5 198.63 0.92
Logit-Boh 1 0.5 239.28 1.31
Logit-Blei 1 1 208.26 1.13
Probit-VB 0.5 0 203.59 1.23
Stick-PW 0.5 2 194.16 1.07

in these regions (upper left corner of plots). The varia-
tional approximation also reduces the correspondence
between the marginal likelihood and the test predic-
tion, thus the minimum of the marginal likelihood is
not useful in finding regions of low prediction error
(high information score), resulting in suboptimal per-
formance. The Blei-bound, being a tighter bound than
the Bohning bound, provides improved marginal like-
lihood estimates as expected, and a better correspon-
dence between the prediction error and the marginal
likelihood. The 4th column is the behavior of the
multinomial probit model and confirms the behavioral
similarity of the logit and probit likelihoods.

The behavior of the stick likelihood is shown in the
5th column. The piecewise bound is highly effective
for this model and the model provides good estimates
even in the highly non-Gaussian posterior regions. An
important appeal of this model is that the correspon-
dence between the marginal likelihood and the pre-
diction is better maintained than the logit or probit
models, and thus parameters obtained by optimizing
the marginal likelihood will result in good predictive
performance.

Performance of all methods at the best parameter set-
ting is summarized in Table 1 showing the best param-
eter values, an approximation to the negative marginal
log-likelihood, and prediction error.

6.3 Categorical Latent Gaussian Graphical
Model (cLGGM)

We compare Blei’s bound to our piecewise bound for a
latent Gaussian graphical model, using the tic-tac-toe
data set, which consists of 958 data examples with 10
dimensions each. All dimensions have 3 categories ex-
cept the last one which is binary (thus the sum of cate-
gories used in the cLGGM is 29). We use 80% for train-
ing and 20% for testing. The ASES data set consists
of survey data from respondents in different countries
(available online3). We select one country (UK) and
only the categorical responses, resulting in 17 response
fields from 913 people; 9 response fields have 4 cate-
gories and the remainder have 3 categories. We com-
pute the imputation accuracy on the test data. Basi-
cally, we run inference on the test data using the es-
timated parameters and compute the predictive prob-
ability for each missing value. The prediction error is
computed similar to Khan et al. (2010).

Figure 3(a) shows the error versus time for one split,
for the tic-tac-toe data. The plot shows that the stick-
PW is a better method to use, since it gives much
lower error when the two methods are run for the same
amount of time. Figure 3(b) compares the error of the
Blei-bound and the piecewise bound for all 20 data
splits used. For all splits, the points lie below the

3www.cs.ubc.ca/∼emtiyaz/datasets.html
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Figure 3: Results on cLGGM model: (a) Imputation error vs time for tic-tac-toe data (b) Imputation error for
different splits for tic-tac-toe data (c) Imputation error for different splits for ASES-UK data.

diagonal line, indicating that the piecewise bound has
better performance. We show a similar plot for the
ASES data set in figure 3(c), which more markedly
shows the improvement in prediction when using the
piecewise bound over Blei’s bound.

7 Discussion and Conclusion

We have presented a new stick-breaking latent Gaus-
sian model for the analysis of categorical data. We
also derived an accurate and efficient variational EM
algorithm using piecewise linear and quadratic bounds.
Due to the bounded error of the piecewise bounds, we
are able to reduce the error in the lower bound to
the marginal likelihood, up to the error introduced by
Jensen’s inequality. This leads to accurate estimates
of the marginal likelihood and parameters, resulting in
improved prediction accuracy. In contrast, variational
learning in existing logit/probit based LGMs gives
poor parameter estimates due to inaccurate bounds for
the log-sum-exp function. Our extensive comparison
with existing logit/probit based LGMs demonstrated
that the proposed stick-breaking model effectively cap-
tures correlation in discrete data and is well suited to
the analysis of categorical data.

A likelihood similar to our stick-breaking model has
been proposed for probabilistic language modeling in
Mnih and Hinton (2009) where the probability of a
word is expressed as a product of sigmoids. A similar
idea using a product of sigmoids has been applied by
Bouchard (2007) to build efficient variational bounds
for the log-sum-exp function.

A popular alternative approach to ours is Expecta-
tion Propagation (EP) (Minka, 2001), which has been
shown to give good performance for binary Gaussian
process classification (Nickisch and Rasmussen, 2008).

An extension of EP to multi-class Gaussian process
classification for the multinomial-logit link is derived
by Seeger and Jordan (2004), but they state that their
approach is “fundamentally limited by the require-
ment of an efficient numerical integration in K di-
mensions” (Seeger and Jordan, 2004, §4.3.1). For the
multinomial-probit link, this is not a limitation since
the numerical integration can be done efficiently as de-
scribed in Seeger et al. (2006). The EP updates, how-
ever, are usually complicated for these methods. A
more important problem with EP is parameter learn-
ing in models, such as categorical factor analysis, for
which we are not aware of any work. The difficulty
in parameter learning with EP is discussed by Seeger
and Jordan (2004, §5) in the context of multi-class
Gaussian process classification. They suggest the use
of a lower bound based on KL divergence, since an
EP approximation is not easy to obtain in the multi-
class case. This leads to a non-standard and usually
non-descending optimization since the inference and
learning steps do not optimize the same lower bound.
These lower bounds are usually not convex, which fur-
ther adds to the difficulty. Such a hybrid VB-EP is
used by Rattray et al. (2009), who also discuss the
difficulty in computing EP approximations for the pa-
rameter learning setting.

Acknowledgments

We thank Guillaume Bouchard (XRCE) for encourag-
ing us to pursue the idea of the stick-breaking like-
lihood. SM is supported by the Canadian Institute
for Advanced Research (CIFAR). We thank the re-
viewers for their valuable suggestions. This work was
supported in part by the Institute for Computing, In-
formation and Cognitive Systems (ICICS) at UBC.



Mohammad Emtiyaz Khan, Shakir Mohamed, Benjamin M. Marlin and Kevin P. Murphy

References

A. Ahmed and E. Xing. On tight approximate infer-
ence of the logistic-Normal topic admixture model.
In Proceedings of the International Conference on
Artificial Intelligence and Statistics, 2007.

J. Albert and S. Chib. Bayesian analysis of binary and
polychotomous response data. Journal of the Amer-
ical Statistical Association, 88(422):669–679, 1993.

C. Bishop. Pattern recognition and machine learning.
Springer, 2006.

D. Blei and J. Lafferty. Correlated topic models. In Ad-
vances in Neural Information Proceeding Systems,
2006.

D. Bohning. Multinomial logistic regression algorithm.
Annals of the Institute of Statistical Mathematics,
44:197–200, 1992.

G. Bouchard. Efficient bounds for the softmax and ap-
plications to approximate inference in hybrid mod-
els. In NIPS workshop on approximate inference in
hybrid models, 2007.

M. Braun and J. McAuliffe. Variational inference for
large-scale models of discrete choice. Journal of the
American Statistical Association, 105(489):324–335,
2010.

M. Collins, S. Dasgupta, and R.E. Schapire. A gen-
eralization of principal component analysis to the
exponential family. In Advances in neural informa-
tion processing systems, pages 617–624, 2002.
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