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Abstract

The goal of continual learning is to sequentially learn new skills without forgetting
old ones. Recent continual-learning approaches have employed gradient-based
approximate Bayesian inference methods to derive such algorithms. In this paper,
we propose a natural-gradient method that unifies two recent approaches based on
Laplace approximation and variational inference, respectively. Our method enables
a plug-and-play implementation where the accuracy of the approximation can be
traded off for the ease of implementation. Our method also enables a principled
application of approximate Bayesian inference for continual learning, and gives
competitive performance to the existing approaches.

1 Introduction

The ability to continually and quickly adapt to changing environments is central to building intelligent
systems. For this purpose, it is important to remember useful past experiences while acquiring new
ones. Such continual learning is crucial for many applications, such as robotics [4], where new tasks
can appear during the training, and data from the previous tasks might be unavailable for retraining.
Despite its importance, many popular learning paradigms cannot learn continually, and either suffer
from catastrophic forgetting or require bespoke training algorithms or model changes to adapt to new
environments.

There are various approaches to facilitate continual learning, e.g., by using an external memory, or by
modifying the model/architecture whenever a new task is encountered. In this paper, our focus is
on methods that modify the training algorithms so that they can learn continually. For example, the
elastic weight consolidation (EWC) method [3] uses past experiences as a prior distribution within an
approximate Bayesian framework by using a type of Laplace approximation. The past experiences
then act as a regularizer to avoid forgetting. Another method called variational continual learning
(VCL) [5] uses variational inference (VI) instead of the Laplace approximation. Our goal in this
paper is to provide a new framework that enables an easy implementation and deployment of such
continual-learning approaches.

We present a new framework based on natural-gradient methods for variational inference. Building
on a recent work of [1], we show that both EWC and VCL can be easily implemented within this
framework. Moreover, the accuracy of the approximation can be traded-off for the simplicity of the
implementation. Our method, therefore, enables a principled application of approximate Bayesian
inference methods while remaining simple to implement and deploy.
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2 Elastic-Weight Consolidation and Variational Continual Learning

A recent approach called the Elastic-Weight Consolidation (EWC) method has revived the interest in
continual learning for neural networks [3]. The key idea there is to constrain model parameters to
stay close to those estimated on previous tasks by using a regularizer. Specifically, denote the optimal
parameter θt−1 found by maximizing an objective on the data D1,D2, . . . ,Dt−1, where each Di
is from a past tasks i. Given the data Dt from a new task t, EWC estimates the new parameters by
optimizing the following regularized objective functions:

L(t)
EWC(θ) := log p(Dt|θ)− 1

2λt(θ − θt−1)
>F(θt−1)(θ − θt−1), (1)

where F(θt−1) :=
∑

n∈Dt−1

[∇θ log p(Dt−1,n|θ)∇θ> log p(Dt−1,n|θ)]
∣∣∣
θ=θt−1

(2)

with F being the Fisher information matrix (FIM) and Dt−1,n is the n’th data example for the
previous task. The second term in (1) is the regularization term. The objective can be seen as a type
of Laplace approximation where we seek to find the mode of the posterior approximation with the
likelihood p(Dt|θ) and a Gaussian priorN (θ|θt−1,F(θt−1)

−1). The Bayesian approach regularizes
the learning on the new task by using the previous posterior approximation as the prior.

To optimize (1), stochastic-gradient methods are used in [3], e.g., we can use the following updates:

EWC: θ ← θ + α

[
ĝt(θ)−

λ

N
f t−1 ◦ (θ − θt−1)

]
, (3)

with ĝt(θ) :=
1

M

∑
n∈M

∇θ log p(Dt,n|θ), and f t−1 := diag [F(θt−1)] , (4)

where ĝt(θ) is a stochastic-approximation of the gradient computed over a randomly sampled
minibatchM from Dt, N is the number of examples in Dt, M is the size of the minibatch, and
◦ denotes element-wise multiplication. To simplify the computation, a diagonal approximation to
the FIM is used. However, this algorithm still requires an explicit computation of the FIM after the
iteration (3) converges. In contrast, as we show later, in our natural VCL approach, the FIM matrix is
estimated during training and this additional step is not required.

Another recent approach called variational continual learning (VCL) uses variational inference for
continual learning [5]. Instead of using a Laplace approximation, a variational approximation is
obtained by optimizing the following variational lower bound:

L(t)
VCL(qt(θ)) := Eqt(θ) [log p(Dt|θ)]− DKL [qt(θ)||qt−1(θ)] , (5)

where qt−1(θ) is the variational approximation at the previous step, and DKL is the Kullback-Leibler
divergence. In practice, the variational approximations are chosen to be in a simple family, e.g., a
Gaussian approximation qt(θ) = N (θ|µt,Σt) with mean µt and covariance Σt. To simplify the
computation, a diagonal approximation to the covariance is often used, i.e., Σ = diag(σ2) where σ
is a vector. The mean and covariance can be obtained by using a stochastic-gradient method, e.g., by
computing the gradients using the reparameterization trick [2] as shown below,

VCL: µ← µ+ α

[
ĝt(θ̂)−

1

N
σ−2t−1 ◦ (µ− µt−1)

]
, (6)

σ ← σ + α

[
ε ◦ ĝt(θ̂)−

1

N

(
−σ−1 + σ ◦ σ−2t−1

)]
, (7)

where θ̂ := µ+ σ ◦ ε, i.e., θ̂ is a sample from N (θ|µ,Σ).

The EWC update of (3) and the VCL update in (6) take similar forms, but there are notable differences.
First, the stochastic gradient in VCL is computed at a sample θ̂ from qt−1, rather than a fixed parameter
θ. This is due to the fundamental difference between the Laplace approximation and VI. The former
is a local approximation at a fixed parameter, while the latter takes into account the neighborhood
around the mean of the variational distribution [6]. For this reason, we expect VCL to be a better
approximation than EWC.

The second difference is that the Fisher vector f t−1 is replaced by the variance σ−2t−1. In variational
inference, the variance is typically related to the Hessian of the log-likelihood (see [6] for details). In
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EWC, the FIM is used instead of the Hessian. An advantage of the VCL approach is that, σt−1 is
estimated during the training, not after the training is finished. This computation in VCL, however,
increases the cost. The EWC update is computationally simpler but might be less accurate than the
VCL update. We will show that our natural VCL method is as simple as the EWC update but could
also be as accurate as VCL.

Both EWC and VCL have their pros and cons. We will now present a natural-gradient based method
which gives a unified framework for continual-learning algorithms similar to EWC and VCL. It also
enables us to trade-off the computation cost for accuracy. We now describe our method.

3 Natural Variational Continual Learning

We present a natural-gradient method for VCL by using the recent work of [1] which proposes
such a method for variational inference. Using their approach, the derivation of our method is
straightforward, and below we only give the update and skip the derivations.

We first present an update obtained by using the Variational Online Gauss-Newton (VOGN) method
presented in [1]. Given the prior qt−1(θ) := N (θ|µt,σ2

t−1), we get the following update by applying
the VOGN method which we call Natural VCL:

Natural VCL: µ← µ+ α σ−2
[
ĝt(θ̂)−

1

N
σ−2t−1 ◦ (µ− µt−1)

]
, (8)

which is similar to the VCL update but with an adaptive-learning rate equal to the variance σ−2.
Unlike VCL, the variance is updated using an online estimate f̂ t of the diagonal of the FIM:

σ−2 ← f̂ t + σ−2t−1, with f̂ t ← β f̂ t + (1− β) N
M

∑
n∈M

diag
[
gt,n(θ̂)gt,n(θ̂)

>
]
, (9)

where β is a scalar step-size and gt,n(θ̂) := ∇θ log p(Dt,n|θ̂). The vector f̂ t is an online estimate of
the diagonal of the FIM F(θ̂), and is used to compute the adaptive-learning rate to update µ.

The natural-VCL update can be seen as a regularized version of the EWC update shown in (3). This
is because the variance of qt−1 is equal to σ−2t−1 = f̂ t−1 + σ−2t−2, i.e., the variance is equal to the
online estimate of the Fisher plus a regularization term from the previous variance estimate. The
natural-VCL algorithm is computationally a bit more attractive than the EWC method because the
FIM is computed during the training and we do not need to run through the whole dataset to compute
it after the training. This simplifies the computation in cases where revisiting the whole dataset is
either costly, infeasible, or even perhaps impossible. However, computation in (9) might not always
be easy to perform since it requires storage of individual gradients gt,n. Nevertheless, it does avoid
the need to estimate FIM on the whole dataset Dt.
The natural-VCL update is computationally much simpler than EWC similarly to the VCL update of
(6). The learning rates are naturally adapted using the variance σ−2 and do not require additional
adaptation using methods such as Adam/RMSprop. This leads to a simpler implementation and
deployment of the method. However, the method above does not exactly optimize the VCL objective
(5), rather uses a Gauss-Newton approximation [1] which only finds an approximate solution of the
VCL objective. We will now describe two other variants of natural-VCL using which we can trade-off
accuracy for ease of implementation.

To exactly optimize the VCL objective, we can use the Variational Online Newton (VON) method of
[1], where the updates are modified to use Hessian instead of the FIM, as shown below:

σ−2 ← ĥt + σ−2t−1, with ĥt ← β ĥt + (1− β) N
M

∑
n∈M

diag
[
∇2
θθ> log p(Dt,n|θ)|θ=θ̂

]
, (10)

This update optimizes the VCL objective and might perform better than EWC, but requires computa-
tion of the Hessian which might be costly.

We can obtain another version which is computationally much simpler than all the methods discussed
so far, but makes a crude approxiation of the FIM by using a gradient-magnitude approximation. This
is referred to as the Variational Adam algorithm or simply Vadam [1]. Applying this method to VCL,
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Figure 1: Results on the permuted MNIST (left) and split MNIST (right). EWC results in the right
are omitted because of its poor performance. On permuted MNIST, VadamVCL performs similarly
to SI and EWC but worse than VCL. For split MNIST, however, it performs better than VCL (and
EWC which is omitted) and comparable to SI.

we get the following update:

Vadam VCL: µ← µ+ α σ−1
[
ĝt(θ̂)−

1

N
σ−2t−1 ◦ (µ− µt−1)

]
(11)

σ−2 ← st + σ−2t−1, with st ← β st + (1− β)N
[
ĝt(θ̂)

]2
. (12)

Here, the learning-rate is modified to be σ instead of its square. The update has a very similar form
to the Vadam algorithm and is very simple to implement. However, we expect the performance to be
worse than other methods we have presented earlier.

In summary, our natural-gradient framework for VCL is related to EWC and VCL, and can be used
to trade-off accuracy and ease of implementation. Our method is a regularized version of EWC and
therefore it is easy to obtain EWC as a special case. The version presented in (8) approximately
optimizes the VCL objective but is simpler to implement than VCL. The natural-VCL update is also
very similar to the cumulative Hessian update proposed by [7]. We can improve the accuracy of
the proposed method by using (10) instead of (9), and we can obtain an easy to implement method
by using (12). Overall, our method enables a plug-and-play implementation of continual learning
methods where the accuracy of the approximation can be traded-off for the ease of implementation.

4 Experiments

We present some preliminary results comparing to existing methods such as EWC, VCL and Synaptic
Intelligence (SI) [8]. We only present comparisons with Vadam VCL.

Permuted MNIST: Here, each task is the standard 10-class MNIST classification, with the pixels of
the digits having undergone a fixed random permutation. Following the previous work of [5], we fit a
fully-connected neural network with 2 hidden layers and 100 units each. We train the model on a
sequence of 10 tasks corresponding to 10 random permutations. We run VadamVCL for 500 epochs
with hyperparameters1 β1 = 0.9, β2 = 0.999, λ = 1, γ = 0.01, η = 0.001. The average running
accuracies for all methods are shown in the right figure in Figure 1.

Split MNIST: For this experiment MNIST digits dataset is split into 5 pairs: 0/1, 2/3, 4/5, 6/7,
8/9, The dataset received for each task is one of these pairs. For all methods is used a multi-
head neural network with 2 hidden layers with 256 units each. VadamVCL parameters are set to
β1 = 0.9, β2 = 0.999, λ = 1, γ = 1, η = 0.0006, and training on each task took 500 epochs. The
average running accuracies for all methods are shown in left figure in Figure 1.

5 Conclusion

We presented the natural variational continual learning method. Our method allows a principled
application of approximate Bayesian inference for continual learning. It enables a plug-and-play
implementation where the accuracy can be traded off for the ease of implementation. We discussed
various versions of our algorithm and discussed the relationship to EWC and VCL.

In the future, we hope to perform many numerical experiments to understand the effect of the
approximation on the performance of the continual-learning task. We hope to implement all versions
of our algorithms and compare them with existing methods.

1These hyperparameters are defined in [1]
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