Learning-Algorithms from
Bayesian Principles

Mohammad Emtiyaz Khan

RIKEN Center for Al Project, Tokyo
http://emtiyaz.github.io

SR



The Goal of My Research

“Io understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”



Human Learning:

At the age of 6
months.




Converged

at the age
of

12 months




Transfer
Knowledge

at the age
of 14
months




Human learning -~ Deep learning

“Continual” learning of “Bulk” learning of all
Incremental information possible information
from non-stationary data from stationary data

My current research focuses on reducing this gap!

Continual lifelong learning with NN (Parisi et al. 2019) 6



Learning-Algorithms from
Bayesian Principles

Practical Bayesian principles.
Bayesian learning rule

— a generalization of many learning-algorithms,

« Classical (least-squares, Newton, HMM,
Kalman.. etc).

* Deep Learning (SGD, RMSprop, Adam).
Data relevance
Continual Learning with Bayes
Impact: Everything with one common principle.



Why Bayes?



Which is a good classifier?




Input 2

Which is a good classifier?

*What the model
does not know but
should know”:
Knowledge gap
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The Bayesian Solution

Uncertainty (Entropy)

(By Kazuki Osawa) https://github.com/team-approx-bayes/dl-with-bayes
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Optimization -> Bayes
NeurlPS 2019
Switching from “Adam” to “VOGN?” in two lines of code change.

import torch
+import torchsso

train_loader = torch.utils.data.DatalLoader(train_dataset)
model = MLP()

—-optimizer = torch.optim.Adam(model.parameters())
+optimizer = torchsso.optim.VOGN(model, dataset_size=len(train_loader.dataset))

Available at https://github.com/team-approx-bayes/dl-with-bayes

12



Bayesian Learning Rule



Bayes Rule as Optimization

Estimate a distribution over model parameters.

p(D10)p(9)

POIP) = T (DI)p(6)d8

Optimization formulation ¢(D, 0) := log p(D|0)p(0)

Distribution (e.g. Gaussian) Entropy

1
max —>(9)[€(D 0)] —H(q)

A

Exploitation  Exploration
Parameters

(e.g., mean and variance)

Zellner, 1988, Bissiri, et al. 2016, Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006)
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Learn i ng by BayeSian Principles

Alstats 2017

Learning by optimization: 6 < 6 — pH ~'Vl(0)

Learning by Bayes: A < (1 — p)A — pV, E, [¢(0)]
| e

Natural and Expectation parameters of g
e.g., Gaussian distribution

Natural parameters {V 'm,V '} q(0) := N(0m,V)

mean parameters 2
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Learning by Bayes

Learning by optimization: 6 < 6 — pH 'V ¢(6)

Learning by Bayes: A < (1 —p)A — pV K, [£(0)]

. /
Natural and Expectation parameters of g

Alstats 2017 | —| Classical algorithms: Least-squares, Newton’s method, Kalman
- filters, Baum-Welch, Forward-backward, etc.

— | Bayesian inference: EM, Laplace’s method, SVI, VMP.
ICML 2018 — | Deep learning: SGD, RMSprop, Adam.

NeurlPS 2018 4 — Reinforcement learning: parameter-space exploration, natural
policy-search.

— Continual learning: Elastic-weight consolidation.
— Online learning: Exponential-weight average.

— Global optimization: Natural evolutionary strategies, Gaussian
homotopy, continuation method & smoothed optimization.

— List incomplete... 16




»~0 - N vy Least Squares
A= (L= p)A = pV,E[€(0)] = A =V, Eq [£(0)

r likelihood prior
gl (y — X0) ' (y — XO) +140'60 | =1(0)
. Y J

—E,, [H]TXTy + trace [XTX}EqA [HHT]}

V% [ (- XTy + 0 | =Vm
Vi _ T T _ -1
00T = X'x T ) =V

Expectation params [XTX + ’y[] _lXTy
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Learning by Bayes for DNNs

(N likelihood prior\
U | Y L(yi, fo(x:)) +~0 "0
\ *=1 neural network /
q(0) := N (0|m, Diag(v))
RMSprop Bayes with diagonal Gaussian
0 < 1 0 < p+e, where e ~ N(0, Ns +7)
g ﬁZVH U(yi, fo(zi)) g < ﬁzvﬂ(yufe(%))
s (1 B)s + B s (1= B)s+ B84 S [Vollyi, folwi))?
N )
vt e 20
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Optimization -> Bayes
NeurlPS 2019
Switching from “Adam” to “VOGN?” in two lines of code change.

import torch
+import torchsso

train_loader = torch.utils.data.DatalLoader(train_dataset)
model = MLP()

—-optimizer = torch.optim.Adam(model.parameters())
+optimizer = torchsso.optim.VOGN(model, dataset_size=len(train_loader.dataset))

for data, target in train_loader:

def closure():
optimizer.zero_grad()
output = model(data)
loss = F.binary_cross_entropy_with_logits(output, target)
loss.backward()
return loss, output

loss, output = optimizer.step(closure)

Available at https://github.com/team-approx-bayes/dl-with-bayes
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Fast Uncertainty in Deep Learning

lteration 1 Entropy (VOGN)
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Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann):



Practical DL with Bayes (on ImageNet)

State-of-the-art performance and convergence rate, while preserving
benefits of Bayesian principles (“well-calibrated” uncertainty).

Accuracy

- Ul o)} ~
o o o o

W
o

validation accuracy [%]

N
o

20 40 60 80
epoch
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A New Bayesian Principle



Defining Relevance

Which examples are most important for the classifier? Red vs Blue.
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Model view vs Data view

Bayesian principles “automatically” define data-relevance.

Data
view




arXiv.org > stat > arXiv:1906.01930

Statistics > Machine Learning

Approximate Inference Turns Deep Networks
Into Gaussian Processes

Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, Maciej Korzepa
(Submitted on 5 Jun 2019)

Deep neural networks (DNN) and Gaussian processes (GP) are two powerful models
with several theoretical connections relating them, but the relationship between their
training methods is not well understood. In this paper, we show that certain
Gaussian posterior approximations for Bayesian DNNs are equivalent to GP
posteriors. As a result, we can obtain a GP kernel and a nonlinear feature map simply
by training the DNN. Surprisingly, the resulting kernel is the neural tangent kernel
which has desirable theoretical properties for infinitely-wide DNNs. We show feature
maps obtained on real datasets and demonstrate the use of the GP marginal
likelihood to tune hyperparameters of DNNs. Our work aims to facilitate further
research on combining DNNs and GPs in practical settings.
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Similarity (Kernel) Matrix
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Bayesian Duality Principle (WIP)

N likelihood prior ~
> lyi, folxi) +7070  ~D g0 0THO 070
i=1

=1 neural network

q(0) := N(0|m, Diag(v))
0 < p+e, where e ~ N (0, Ns+ \)
g < ﬁ Zve (i, fo(zi))

s (1= B)s+ B3 > [Vollyi, folz:)))
g+Au/N
s+ AN

Y U+ o
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Deep Continual Learning with Bayes

FROMP: Functional Regularization of Memorable Past
“Identify, Memorize, and Regularize”
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Works Well on Standard Benchmarks

On MNIST and CIFAR-100, we get state-of-the-art results!

Method Permuted MNIST Split MNIST
DLP (Smola et al., 2003) 82% 61.2%
EWC (Kirkpatrick et al., 2017) 84% 63.1%
SI (Zenke et al., 2017) 86Y% 98.9%
Improved VCL (Swaroop et al., 2019) 93% + 1 98.4% + 0.4

+ random Coreset 94.6% + 0.3 (200 p/t) 98.2% =+ 0.4 (40 p/t)
FRCL-RND (Titsias et al., 2019) 94.2% + 0.1 (200 p/t)  96.7% = 1.0 (40 p/t)
FRCL-TR (Titsias et al., 2019) 94.3% + 0.1 (200 p/t)  97.4% =+ 0.6 (40 p/t)
FRORP-L, 87.9% + 0.7 (200 p/t) 98.5% + 0.2 (40 p/t)
FROMP-L, 94.6% + 0.1 (200 p/t)  98.7% =+ 0.1 (40 p/t)
FRORP 94.6% + 0.1 (200 p/t)  99.0% =+ 0.1 (40 p/t)
FROMP 94.9% + 0.1 (200 p/t)  99.0% =+ 0.1 (40 p/t)

mmm FROMP

0 4
| i £
b oy
. o
3 3
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f © ()7 s EWC
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1.5 4

1.0 4

0.5 A

0.0 A

—0.51

—-1.01

Relevance of Examples

Given a minibatch at each iteration, we select examples with less
noise (low variance of epsilon_i in the approximated linear model).

Lambda-guided, epoch 0

=135

(By Roman Bachmann)



Learning-Algorithms from
Bayesian Principles

Practical Bayesian principles.
Bayesian learning rule

— a generalization of many learning-algorithms,

« Classical (least-squares, Newton, HMM,
Kalman.. etc).

* Deep Learning (SGD, RMSprop, Adam).
Data relevance
Continual Learning with Bayes
Impact: Everything with one common principle.
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Learning-Algorithms from
Bayesian Principles

A long paper to be released before my NeurlPS tutorial

Mon Dec 9th 08:30 -- 10:30 AM @ West Hall A Tutorial

Deep Learning with Bayesian Principles
Mohammad Emtiyaz Khan

L Emtiyaz Khan »

Deep learning and Bayesian learning are considered two entirely different fields often used in complementary
settings. It is clear that combining ideas from the two fields would be beneficial, but how can we achieve this
given their fundamental differences?

This tutorial will introduce modern Bayesian principles to bridge this gap. Using these principles, we can
derive a range of learning-algorithms as special cases, e.g., from classical algorithms, such as linear
regression and forward-backward algorithms, to modern deep-learning algorithms, such as SGD, RMSprop
and Adam. This view then enables new ways to improve aspects of deep learning, e.g., with uncertainty,
robustness, and interpretation. It also enables the design of new methods to tackle challenging problems,
such as those arising in active learning, continual learning, reinforcement learning, etc.

Overall, our goal is to bring Bayesians and deep-learners closer than ever before, and motivate them to work
together to solve challenging real-world problems by combining their strengths.
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A 5 page review

Fast yet Simple Natural-Gradient Descent for
Variational Inference in Complex Models

Mohammad Emtiyaz Khan
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
emtiyaz.khan@riken.jp

Abstract—Bayesian inference plays an important role in ad-
vancing machine learning, but faces computational challenges
when applied to complex models such as deep neural networks.
Variational inference circumvents these challenges by formulating
Bayvesian inference as an optimization problem and solving it
using gradient-based optimization. In this paper, we argue in
favor of natural-gradient approaches which, unlike their gradient-
based counterparts, can improve convergence by exploiting the
information geometry of the solutions. We show how to derive fast
yet simple natural-gradient updates by using a duality associated
with exponential-family distributions. An attractive feature of
these methods is that, by using natural-gradients, they are able
to extract accurate local approximations for individual model
components. We summarize recent results for Bayesian deep
learning showing the superiority of natural-gradient approaches
over their gradient counterparts.

Index Terms—Bayesian inference, variational inference, nat-
ural gradients, stochastic gradients, information geometry,
exponential-family distributions, nonconjugate models.

Didrik Nielsen
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
didrik.nielsen @riken.jp

prove the rate of convergence [7]-19]. Unfortunately, these
approaches only apply to a restricted class of models known
as conditionally-conjugate models, and do not work for non-
conjugate models such as Bayesian neural networks.

This paper discusses some recent methods that generalize
the use of natural gradients to such large and complex non-
conjugate models. We show that, for exponential-family ap-
proximations, a duality between their natural and expectation
parameter-spaces enables a simple natural-gradient update.
The resulting updates are equivalent to a recently proposed
method called Conjugate-computation Variational Inference
(CVI) [10]. An attractive feature of the method is that it
naturally obtains local exponential-family approximations for
individual model components. We discuss the application
of the CVI method to Bayesian neural networks and show
some recent results from a recent work [11] demonstrating
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3 YouTube™ Search

Fast yet Simple Natural-Gradient
Descent for Variational Inference

Mohammad yaz Khan
RIKEN Center for Al Project, Tokyo
http://emtiyaz.github.io

W 002/31:27

Emtiyaz Khan: Fast yet Simple Natural-Gradient Descent for Variational Inference

38



Ac kn OWIedgements Slides, papers, & code

are at emtiyaz.github.io

Wu Lin Nicolas Hubacher
(Past: RA) (Past: RA)

Masashi Sugiyama Voot Tangkaratt

Zuozhu Liu RAIDEN Mark Schmidt Reza Babanezhad Yarin Gal Akash Srivastava
(Intern from SUTD) (UBC) (UBC) (UOxford) (UEdinburgh)



Acknowledgements are at emtyaz giihublo

Kazuki Osawa Rio Yokota Anirudh Jain  Runa Eschenhagen Siddharth Rich Turner
(Tokyo Tech) (Tokyo Tech) (Intern from (Intern from Syvarqop (University of
IIT-ISM, India) University of (University of Cambridge)
Osnabruck) Cambridge)

Alexander Immer Ehsan Abedi Maciej Korzepa Pierre Alquier Havard Rue
(Intern from EPFL) (Intern from EPFL(intern from TU Denmark) (RIKEN AIP) (KAUST)



Approximate Bayesian Inference Team

Looking for interns, research assistants, post-docs, and collaborators
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