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The Goal of My Research

“To understand the fundamental principles of 
learning from data and use them to develop 
algorithms that can learn like living beings.”
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Human Learning:
At the age of 6 

months.



Converged 
at the age 

of 
12 months
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Transfer 
Knowledge
at the age 

of 14 
months



Human learning        Deep learning
“Continual” learning of 
incremental information 
from non-stationary data
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“Bulk” learning of all 
possible information 
from stationary data

Continual lifelong learning with NN (Parisi et al. 2019)

My current research focuses on reducing this gap!



Learning-Algorithms from 
Bayesian Principles

• Practical Bayesian principles.
• Bayesian learning rule 
– a generalization of many learning-algorithms,
• Classical (least-squares, Newton, HMM, 

Kalman.. etc).
• Deep Learning (SGD, RMSprop, Adam).

• Data relevance
• Continual Learning with Bayes
• Impact: Everything with one common principle.
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Why Bayes?
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Which is a good classifier?
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Which is a good classifier?
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“What the model 
does not know but 

should know”:  
Knowledge gap



The Bayesian Solution

11(By Kazuki Osawa) https://github.com/team-approx-bayes/dl-with-bayes

Bayes
Optim

Uncertainty (Entropy)



Optimization -> Bayes
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Switching from “Adam” to “VOGN” in two lines of code change.

Available at https://github.com/team-approx-bayes/dl-with-bayes

NeurIPS 2019



Bayesian Learning Rule

Learning algorithms from Bayes
Uncertainty for free

Data relevance for free
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Bayes Rule as Optimization
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Estimate a distribution over model parameters.

EntropyDistribution (e.g. Gaussian)

Parameters
(e.g., mean and variance)

max
�

�Eq�(✓)[`(D, ✓)]�H(q)
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ExplorationExploitation

Optimization formulation `(D, ✓) := log p(D|✓)p(✓)
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Zellner, 1988, Bissiri, et al. 2016, Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006)



Learning-Algorithms by Bayesian Principles
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Learning by optimization:

Learning by Bayes:

Natural and Expectation parameters of q

✓  ✓ � ⇢H
�1r✓`(✓)

<latexit sha1_base64="UgVSpSO3jg+znHAHuOPezTGqcZ0="></latexit>

� (1� ⇢)�� ⇢rµEq [`(✓)]
<latexit sha1_base64="j+JGCOukOM/iG0+pI2qWrxXe3JM="></latexit>

� (1� ⇢)�� ⇢rµEq [`(✓)]
<latexit sha1_base64="j+JGCOukOM/iG0+pI2qWrxXe3JM="></latexit>

q(✓) := N (✓|m,V )
<latexit sha1_base64="CIOg3GR2+LqD+oxPc0DHAMUfPIk=">AAACD3icbVDLSgNBEJyNrxhfqx4FGQxKAhJ240ERlIAXTxLBPCAbwuxkYobMPpzpFcKaP/DiUT/DiwdFvHr15t84m+SgiQUNRVU33V1uKLgCy/o2UjOzc/ML6cXM0vLK6pq5vlFVQSQpq9BABLLuEsUE91kFOAhWDyUjnitYze2dJX7tlknFA/8K+iFreuTa5x1OCWipZe7d5BzoMiB5fHyCHY9AlxIRXwzG8h329nE13zKzVsEaAk8Te0yype3HBE/llvnltAMaecwHKohSDdsKoRkTCZwKNsg4kWIhoT1yzRqa+sRjqhkP/xngXa20cSeQunzAQ/X3REw8pfqeqzuTg9Wkl4j/eY0IOkfNmPthBMyno0WdSGAIcBIObnPJKIi+JoRKrm/FtEskoaAjzOgQ7MmXp0m1WLAPCsVLncYpGiGNttAOyiEbHaISOkdlVEEU3aNn9IrejAfjxXg3PkatKWM8s4n+wPj8Abqcnu0=</latexit>

Expectation/moment/
mean parameters 

Natural parameters

exp


m>V �1✓ � 1

2
✓>V �1✓

�

<latexit sha1_base64="DUZR9B3A4u3AbBfSdrZiSrYMgvo="></latexit>

{V �1m,V �1}
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e.g., Gaussian distribution

{E(✓),E(✓✓>)}
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AIstats 2017



Learning by Bayes
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Learning by optimization:

Learning by Bayes:

– Classical algorithms: Least-squares, Newton’s method, Kalman 
filters, Baum-Welch, Forward-backward, etc.

– Bayesian inference: EM, Laplace’s method, SVI, VMP.
– Deep learning: SGD, RMSprop, Adam.
– Reinforcement learning: parameter-space exploration, natural 

policy-search.
– Continual learning: Elastic-weight consolidation.
– Online learning: Exponential-weight average.
– Global optimization: Natural evolutionary strategies, Gaussian 

homotopy, continuation method & smoothed optimization.
– List incomplete…

Natural and Expectation parameters of q

✓  ✓ � ⇢H
�1r✓`(✓)

<latexit sha1_base64="UgVSpSO3jg+znHAHuOPezTGqcZ0="></latexit>

� (1� ⇢)�� ⇢rµEq [`(✓)]
<latexit sha1_base64="j+JGCOukOM/iG0+pI2qWrxXe3JM="></latexit>

AIstats 2017
ICML 2017

NIPS 2017

ICML 2018
NeurIPS 2018
ISITA 2018
ICLR 2018
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Expectation params

Least Squares
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likelihood prior
(y �X✓)>(y �X✓) + �✓>✓
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:= `(✓)
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� (1� ⇢)�� ⇢rµEq [`(✓)]
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= V �1m
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Switching from “Adam” to “VOGN” in two lines of code change.

Available at https://github.com/team-approx-bayes/dl-with-bayes

NeurIPS 2019



Fast Uncertainty in Deep Learning

20



21

Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)



Practical DL with Bayes (on ImageNet)

22

Figure 1: Comparing VOGN [22], a natural-gradient VI method, to Adam and SGD, training ResNet-
18 on ImageNet. The two left plots show that VOGN and Adam have similar convergence behaviour
and achieve similar performance in about the same number of epochs. VOGN achieves 67.38% on
validation compared to 66.39% by Adam and 67.79% by SGD. Run-time of VOGN is 76 seconds per
epoch compared to 44 seconds for Adam and SGD. The rightmost figure shows the calibration curve.
VOGN gives calibrated predictive probabilities (the diagonal represents perfect calibration).

We demonstrate practical training of deep networks by using recently proposed natural-gradient VI38

methods. These methods resemble the Adam optimiser, enabling us to leveraging existing techniques39

for initialisation, momentum, batch normalisation, data augmentation, and distributed training. As a40

result, we obtain similar performance in about the same number of epochs as Adam when training41

many popular deep networks (e.g., LeNet, AlexNet, ResNet) on datasets such as CIFAR-10 and42

ImageNet. See Fig. 1 for Imagenet. The results show that, despite using an approximate posterior, the43

training methods preserve the benefits of Bayesian principles. Compared to standard deep-learning44

methods, the predictive probabilities are well-calibrated and uncertainties on out-of-distribution45

inputs are improved. Our work shows that practical deep learning is possible with Bayesian methods46

and aims to support further research in this area.47

Related work. Previous VI methods, notably by Graves [15] and Blundell et al. [4], require signifi-48

cant implementation and tuning effort to perform well, e.g., on convolution neural networks (CNN).49

Slow convergence is found to be problematic for sequential problems [43]. There appears to be no50

reported results with complex networks on large problems, such as ImageNet. Our work solves these51

issues by borrowing deep-learning techniques and applying them to natural-gradient VI [22, 51].52

In their paper, Zhang et al. [51] also employed data augmentation and batch normalisation for a53

natural-gradient method called Noisy K-FAC (see Appendix A) and showed results on VGG on54

CIFAR-10. However, a mean-field method called noisy Adam was found to be unstable with batch55

normalisation. In contrast, we show that a similar method, called Variatonal Online Gauss-Newton56

(VOGN), proposed by Khan et al. [22], works well with such techniques. We show results for57

distributed training with noisy K-FAC on Imagenet, but do not provide extensive comparisons. Many58

of our techniques can be used to speed-up noisy K-FAC too, which is promising.59

Many other approaches have recently been proposed to compute posterior approximations by training60

deterministic networks [44, 36, 37]. Similarly to MC-dropout, the posterior approximation is not61

flexible and it is difficult to improve the accuracy of the posterior approximations. On the other hand,62

VI offers a much more flexible alternative to apply Bayesian principles to deep learning.63

2 Deep Learning with Bayesian Principles and Its Challenges64

The success of deep learning is partly due to the availability of scalable and practical methods for65

training deep neural networks (DNNs). Network training is formulated as an optimisation problem66

where a loss between the data and the DNN’s predictions is minimised. For example, in a supervised67

learning task with a dataset D of N inputs xi and corresponding outputs yi of length K, we minimise68

a loss of the following form: ¯̀(w) + �w
>
w, where ¯̀(w) := 1

N

P
i `(yi, fw(xi)), fw(x) 2 RK

69

denotes the DNN outputs with weights w, `(y, ŷ) denotes a differentiable loss function between an70
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State-of-the-art performance and convergence rate, while preserving 
benefits of Bayesian principles (“well-calibrated” uncertainty).
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What will be elucidated and to what extent: The final outcomes of our proposal are as follows: 

1. New methods to “identify, memorize, and recall” for continual/active/reinforcement learning. See Fig. 
6 for an example. 

2. New software plug-ins for deep-learning such as those shown in Algorithm below. 
3. Theoretical guarantees for our new methods. 

We will now give more details for these deliverables. 
 
Project A: Continual learning to 

avoid forgetting the past information. 
We will start our investigation with this 
project where the focus will be on 
designing methods to remember useful 
past information. We have already had 
some success on this part. A 
representative result is shown in Fig. 6 
(below), which uses a simple way to 
“identify” using Bayesian principles, a 
brute force way to “memorize” by storing 
all data examples, and a “regularization” 
of the memory to avoid forgetting the 
past. This approach obtains state-of-the-
art results on medium-size datasets such as MNIST and CIFAR. An important feature of our approach is that it 
requires minimal changes to the existing deep-learning code. This is shown in Algorithm (above) where only 
line 7,10, and 11 are added on top of an existing deep-learning optimizer.  

 

 
 

Our ultimate goal is to be able to do continual learning at ImageNet scale where the number of 
categories are extremely large (a 1000 categories). We will pursue more sophisticated methods to identify, 
memorize, and regularize.  The resources required for this project: 

(1) A dedicated researcher for a period of 8 months to one year. 
(2) Computing resources to run large scale experiments. 
(3) Travel expenses for collaboration with Prof. Richard Turner, University of Cambridge. 

 
Project B: Active learning to build datasets. Building on the results of project A, this project will focus on 

sequentially increasing the size of the dataset. Given many unlabeled data (such as images of unknown 
animals), the goal is to choose some to label them (e.g., asking “what animal is this?”). We can only afford to 
label a few images at a time. Our key idea is to use “recall” to choose such images. Given an unlabeled 
image, we can find related examples in our memory. A good strategy then is to choose examples different than 
what we have seen in the past, but sometimes choose similar ones to avoid forgetting. A toy example with a 

Algorithm: Continual Learning with Identify, memorize and regularize.

Which examples are most important for the classifier? Red vs Blue.
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(a) MNIST: GP kernel matrix (left) and GP posterior mean (right).
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(b) CIFAR: GP posterior mean.

Figure 3: GP kernel and posterior mean corresponding to the Laplace approximation for LeNet5
trained on MNIST and CIFAR-10. The kernel matrix shows the correlations learned by the DNN
(classes are grouped and marked with different colors along the axes). For MNIST, a higher posterior
mean is assigned to the correct label most of the time (see rows in (b)), which reflects the good
accuracy obtained by the DNN (99%). For CIFAR, the accuracy is only 68%, as a result, the patter is
a bit unclear reflecting the uncertainty in the predictions.
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(a) Binary classification on digits 0 and 1
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(b) Binary classification on digits 4 and 9

Figure 4: GP kernel and posterior mean corresponding to VI on 2 out of 10 MNIST classes. We
clearly see that the in-class digits are assigned higher posterior mean and the correlation learned is
also significant. There are plenty of other correlations learned by the network due to which we get
many overconfident predictions for out-of-training classes, especially on the harder 4 vs. 9 task.

Figure 3a shows the GP kernel matrix and the posterior mean for the Laplace approximation on216

300 randomly sampled examples from MNIST. The rows and columns containing data examples217

are grouped according to the classes. The kernel matrix clearly shows the correlations learned by218

the DNN. As expected, each row in the posterior mean also reflects that the classes are correctly219

classified (DNN test accuracy is 99%). Figure 3b shows the GP posterior mean for CIFAR-10 where220

we see the same pattern but a bit unclear, which is due to a lower accuracy of around 68% on this221

task. Due to space constraints, the corresponding results for VI are shown in Appendix C.222

In Fig. 4, we study the kernel for classes outside of the training data set using VI. We train LeNet-5223

using VOGN on two binary-classification problems on MNIST. In both figures, the data examples are224

sorted according to the digits (0 is on top/left and 9 is at bottom/right).225

Within the MNIST data set, classes 4 and 9 is one of the hardest pair to distinguish while 0 and 1 is a226

simple task. Fig. 4 shows that the kernel obtained for the simpler task leads to much less correlations227

with unseen classes and the posterior mean does not produce confident predictions on other classes.228

However, training on the harder task yields a potentially more complex feature map that leads to229

overconfident out-of-class predictions and high correlations. These observations are in line with230

confusion metrics typically obtained on the MNIST data set.4231

4Exemplary MNIST confusion matrix: https://ml4a.github.io/demos/confusion_mnist/
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Figure 1: This figure illustrates our method. Leftmost figure shows the result of training on task
1. Examples corresponding to memorable-past, shown with big markers, are chosen using a GP
formulation of the neural network. These points usually are the ones that support the decision
boundary. Middle figure shows the result after task 2 where new network functions are regularised
at memorable-past examples to give the same prediction as the previous ones. The resulting green
decision boundary classifies both task 1 and 2 well. The rightmost figure shows the result along with
memorable-past of each task where the performance over the past tasks is maintained.

function-regularisation with deep networks. A Laplace approximation of this objective enables a
scalable training algorithm. Our work in this paper focuses on avoiding forgetting, but it opens a
new direction for life-long learning methods where regularisation methods are naturally combined
with memory-based methods.

Other related works. Broadly, existing work on continual learning can be split into three ap-
proaches: inference based, memory/rehearsal based, and model based. Inference based approaches
have mostly focused on weight-regularisation, with some recent efforts on functional-regularisation.
Our work falls in the latter category. Memory based approaches either maintain a memory of past
data examples (Rebuffi et al., 2017) or train generative models on previous tasks to rehearse pseudo-
inputs (Shin et al., 2017). An advantage of our method compared to previous ones is that build-
ing memory does not require solving an optimisation problem: the computation simply involves a
forward-pass through the network followed by sorting (see Section 3.2).

Similarly to our work, there have also been some efforts in combining the different flavours of
approaching continual learning, e.g., VCL plus coresets (Nguyen et al., 2018) and Gradient-Episodic
Memory (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018). Benjamin et al. (2018) have proposed
a similar combination for functional regularisation. In these approaches, two separate methods are
usually used for regularisation and memory-building. In contrast, in our approach, both of these are
done within the same GP framework by using the method of Khan et al. (2019).

Finally, model based approaches change the model architecture during training (Rusu et al., 2016)
and this can be combined with other approaches (Schwarz et al., 2018). It is possible to use similar
features in our GP based framework, which is an interesting future direction to be pursued.

2 CONTINUAL LEARNING WITH WEIGHT/FUNCTIONAL REGULARISATION

In deep learning, we minimise loss functions to estimate network weights. For example, in super-
vised multi-class classification problems, we are given a dataset D of N input-output pairs with
outputs yi , a vector of K classes, and inputs xi , a vector of length D, and our goal is to minimise a
loss which takes the following form: ¯̀(w) + �R(w), where ¯̀(w) := 1

N

ÕN
i=1 `(yi, fw(xi)) with deep

neural network fw(x) 2 RK and its weights w. `(y, ŷ) denotes a differentiable loss function be-
tween an output y and its prediction ŷ, R(w) is a regularisation function (usually an L2-regulariser
R(w) = w>w) and � > 0 controls the regularisation strength. Standard deep-learning approaches
rely on an unbiased stochastic-gradient of the loss ¯̀, which usually requires access to all of the data
examples for all classes (Bottou, 2010). It is this unbiased, minibatch setting where deep-learning
excels and achieves state-of-the-art performance on many benchmark datasets.

In reality, we do not always have access to all the data at once, and it is not possible to obtain
unbiased stochastic gradients. New classes may appear during training and old classes may never be
seen again. For such settings, vanilla mini-batch stochastic-gradient methods leads to catastrophic
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Table 2: The average validation accuracy on Permuted-MNIST and Split-MNIST. “200p/t” denotes
that 200 examples are selected for each task. We report mean and standard deviations over 5 runs,
and use results from Nguyen et al. (2018) for baselines. FROMP is state-of-the-art with 200p/t.
Additionally, as we reduce the number of points (see Figure 3), FROMP gracefully reduces accuracy,
due to clever choice of memory past and the use of kernels in the functional regularisation.

Method Permuted MNIST Split MNIST

DLP (Smola et al., 2003) 82% 61.2%
EWC (Kirkpatrick et al., 2017) 84% 63.1%
SI (Zenke et al., 2017) 86% 98.9%
Improved VCL (Swaroop et al., 2019) 93% ± 1 98.4% ± 0.4

+ random Coreset 94.6% ± 0.3 (200 p/t) 98.2% ± 0.4 (40 p/t)
FRCL-RND (Titsias et al., 2019) 94.2% ± 0.1 (200 p/t) 96.7% ± 1.0 (40 p/t)
FRCL-TR (Titsias et al., 2019) 94.3% ± 0.1 (200 p/t) 97.4% ± 0.6 (40 p/t)
FRORP-L2 87.9% ± 0.7 (200 p/t) 98.5% ± 0.2 (40 p/t)
FROMP-L2 94.6% ± 0.1 (200 p/t) 98.7% ± 0.1 (40 p/t)
FRORP 94.6% ± 0.1 (200 p/t) 99.0% ± 0.1 (40 p/t)
FROMP 94.9% ± 0.1 (200 p/t) 99.0% ± 0.1 (40 p/t)

(a) random example kernel (b) memorable past kernel (c) accuracy vs. memory size

Figure 3: Permuted MNIST: added kernels across classes (with subtracted diagonal for visualisation
purposes), and performance as a function of memory size. Memorable past examples lead to a more
uniform kernel structure that prevents weighting previously overfit examples too highly, e.g. task
one in the random selection exhibits strong correlation and low variance. As we reduce the number
of examples in memory, FROMP gracefully reduces validation accuracy.

Following the settings of previous work, we select 40 inducing points per task. The learning rate is
set to 0.0001, batch size to 128, and we learn each task for 15 epochs.

We report the final average accuracy for both benchmarks across all the tasks in Table 2 after tuning
the hyperparameters of all algorithms. In particular, the proposed method achieves better perfor-
mance than the weight-space methods EWC and VCL, as well as compared to the function-space
method FRCL that is based on a GP formulation. Further, the benchmarks show superior perfor-
mance of both the approach to select important examples (Sec. 3.2) and the functional regularisation
using the kernel (Sec. 3.3). Memorable examples improve performance of the naive and efficient
FRORP-L2 method by more than 6% on permuted MNIST and by 0.2% on the split MNIST. Stan-
dard deviation is also reduced in both cases. FROMP does not profit much from memorable ex-
amples compared to FRORP, probably because the performance is already close to the maximum
achievable. Furthermore, Fig. 3c shows that our selection method greatly reduces the number of
memorable points required: the L2 algorithm with random points requires nearly 100 points to match
the performance when using 20 carefully selected points, and 200 points to match performance with
40, respectively. When combined with kernel-based functional regularisation, we obtain the best-
performing method, particularly when memory size is small.

Figs. 3a and 3b show the summed kernels across all the classes in permuted MNIST for a random
and memorable set of points. For visualisation purposes, the diagonal is suppressed. Note that ran-
dom points lead to less uniform weighting in the kernel, making it even more important in functional
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Figure 4: Split CIFAR: performance for each task, and performance variation as function of memory
size. We run all the proposed methods 5 times and report the mean and standard derivation. The
left figure reports results for 200 memory examples per task. The final average validation accuracy
of FROMP is 76.2% ± 0.2, FROMP-L2 is 74.6% ± 0.3, SI is 73.5%, EWC is 71.6% ± 1.5, VCL +
random coreset is 67.4% ± 2.4. FROMP outperforms all other methods. Additionally, as we reduce
the memory size, FROMP still performs well, even with only 10 examples per task.

regularisation, leading to better performance (FRORP vs FROMP). All memorable points are im-
portant and the kernel is more uniform. In Fig. 3a, the kernel’s weighting of task 1 is very different
from other tasks, leading to different magnitudes in the functional regularisation among tasks and
therefore to eventual forgetting. The kernel further tells us that the tasks are correlated, as expected.

4.3 SPLIT CIFAR

We now test the proposed method on a more complex problem. Split CIFAR consists of 6 tasks. The
first task is the full CIFAR-10 dataset, followed by 5 tasks, each corresponding to 10 consecutive
classes from CIFAR-100. We follow the SI paper (Zenke et al., 2017) for our model architecture,
using a multi-head CNN with 4 convolutional layers, followed by 2 dense layers with dropout. We
use learning rate 0.0001 and batch size 256. All tasks are learned for 80 epochs, and hyperparameters
tuned as before. In addition to continual learning baselines, we show the performance of networks
trained from scratch on each task. These cannot profit from forward/backward transfer.

The experimental results in Figure 4a show that FROMP outperforms other methods by a notable
margin. The weight-space methods employed as baselines either cannot learn later tasks to a high
accuracy (EWC, SI), or forget previous tasks (VCL). Interestingly, over all tasks, FROMP also out-
performs ‘from scratch’ training. Although we only focussed on preventing catastrophic forgetting,
we find evidence of forward/backward transfer, a key requirement in continual learning.

In contrast to the rather simple MNIST benchmarks, both the benefit of selecting memorable points
as well as using the kernel are clearly visible in Fig. 4b. If we only memorise few examples, the per-
formance gap due to using the kernel is around 4%. The selection of memorable points according to
our metric leads to an increase in performance of around 7%. Applying both kernel and memorable
point selection increases the performance by up to 11%. Additionally, standard deviation is reduced
when using memorable points or the kernel. It is clear that both parts of the proposed algorithm are
vital in achieving state-of-the-art performance on this benchmark.

5 DISCUSSION

We propose FROMP, a scalable function-regularisation approach for continual learning. FROMP
uses a GP formulation of neural networks to select memorable past examples, regularising them
using a kernel, and achieving state-of-the-art performance across benchmarks. This work enables
a new way of combining regularisation methods and memory-based methods in continual learning.
Future research could investigate other ways of selecting a memorable past (e.g. fixed memory size),
more efficient ways of calculating kernel matrices, and consider the case where data does not arrive
in tasks.
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set to 0.0001, batch size to 128, and we learn each task for 15 epochs.

We report the final average accuracy for both benchmarks across all the tasks in Table 2 after tuning
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achievable. Furthermore, Fig. 3c shows that our selection method greatly reduces the number of
memorable points required: the L2 algorithm with random points requires nearly 100 points to match
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Given a minibatch at each iteration, we select examples with less 
noise (low variance of epsilon_i in the approximated linear model).

(By Roman Bachmann)



Learning-Algorithms from 
Bayesian Principles

• Practical Bayesian principles.
• Bayesian learning rule 
– a generalization of many learning-algorithms,
• Classical (least-squares, Newton, HMM, 

Kalman.. etc).
• Deep Learning (SGD, RMSprop, Adam).

• Data relevance
• Continual Learning with Bayes
• Impact: Everything with one common principle.
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