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The Goal of My Research

“Jo understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Bayesian
Human learning £ Deep learning

Life-long learning from Bulk learning from a
small chunks of datain  large amount of data in
a non-stationary world a stationary world

My current research focuses on reducing this gap!

Parisi, German I., et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)

Friston, K. "The free-energy principle: a unified brain theory?." Nature reviews neuroscience (2010)
Geisler, W. S., and Randy L. D. "Bayesian natural selection and the evolution of perceptual
systems." Philosophical Transactions of the Royal Society of London. Biological Sciences (2002)



Bayesian learning Deep learning

Bayesian models Deep models
(GPs, BayesNets, PGMs,) (MLP, CNN, RNN etc.)
Bayesian inference Stochastic training

(Bayes rule) (SGD, RMSprop, Adam)

_-
Can handle large data and complex models?
Scalable training?

Can estimate uncertainty?

Can perform sequential / active /online /
incremental learning?

v
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Bringing the two together

To combine their complimentary
strengths to solve challenging
learning problems



Deep Learning with Bayesian
Principles

Bayesian principles as a general principle

— To design/improve/generalize learning-algorithms
— By computing “posterior approximations”

Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc
Design new deep-learning algorithms

— Uncertainty, data importance, life-long learning

Impact: Everything with one common principle.



Is this different from
Bayesian Deep Learning?



Scope of the Tutorial

* Audience: Deep learners and Bayesians
» Goal: To bring the two together
 This tutorial is not about
— Bayesian deep-learning methods
— Classical Bayesian inference methods
— Approximate Bayesian Inference
— Uncertainty estimation
— Generative Models, VAE, etc.
— Gaussian processes and NN architectures



Disclaimer

* | might not have time to discuss many
important/relevant works
— If you think | should have included some of

those, please send me email and | will try to
Include it the next time

* The content of the tutorial is based on my
own biased opinion (and expertise)

— Alot of it is based on my own work (28 slides
out of 62)



Deep Learning
VS
Bayesian Learning



Deep Learning (DL)

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N
m@in ((D,0) = Z[y’b — fo(x)]? + 070
Loss t 1% P K
Data Delep
Model Params Network

DL Algorithm: 6 <+ 6 — pH, "V /()

Scales well to large data and complex model, and
very good performance in practice.



Example: Which is a Better Fit?

1000 R . 57%

;0 | ‘ | B 43%
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O
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(L oot -

\\
0.001 1 .

0.0001- - - .
45 50 55 60 65 20 25 80 85 90 95 Red is more

More data »Less data  isky than
Magnitude of Earthquake the blue

Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise” 15




Example: Which is a Better Fit?

1000
oy Uncertainty:
“What the
> 10 1
O model does
C 1 b}
® not know
o> o
o
(T oot 5 Choose less
0.001 Ny risky options!
0'0001‘{5 50 55 60 65 20 25 80 85 90 95 Avoid data
More data » | ess data bias with
Magnitude of Earthquake uncertainty!

Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise” 16



Bayesian Principles

1. Sample 0 ~ p(0) prior

2.Score  p(D|h) = Hp yz\ fo(x;)) Likelihood

3. Normalize ; R

Posterior Likelihood X Prior
p(D|0)p(0)
| p(D]0)p(6)do

A global method: Integrates over all models
Does not scale to large problem

p(0|D) =

50

|

10 50 100
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Input 2

10

Which is a good classifier?

Input 1

18



Which is a good classifier?

“What the model
does not know”

19



Sequential Bayesian Inference

To© Gogn p(Dq1|0)p(0
& O )0
T o(D1[0)p(0)d0

Set the prior to the previous
posterior and recompute:

_ p(D2|0)p(0]|D1)
| p(D2|0)p(0|Dy)do

p(9|p27 Dl)

The global property enables sequential update

20



Bayesian learning Deep learning

Integration (global) Differentiation (local)
p(D|6)p(0) 1
p(0|D) = 6«6 H, "Vol(6

B 3
Can handle large data and complex models?
Scalable training? x

Can estimate uncertainty? v

X X (s«

Can perform sequential / active /online / /
incremental learning?

21



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.

22



Bayesian principles to derive
Learning-Algorithms

Main ideas: Introduce “posterior approximations”
and the “Bayesian learning rule” to estimate them

Complex < >  Simple

Gradient
Bayes’ rule Ensemble Newton pageent

23



Exponential Family Approximations

Natural Sufficient Expectation
parameters Statistics parameters
| | |
T L
a(6) o< exp [A T<9>] = E,[T(6)
N(Om,S™1) o exp ( 1506 — ]
T <S )
X exp Sm 0+ Tr 5
" Gaussian distribution q(0) :=N(0m,S™ 1) )
Natural parameters A= {Sm,—5/2}
_ Expectation parameters i := (E,(0),E,(00")} )

24



Bayesian Learning Rule

min ¢() vs min E, g [£(0)] — H(q)
0 g€ e Entropy
Deep Learning algo: § « 0§ — pH, ' Vy((6)

Bayes learning rule: A <— X\ — oV, (E,[¢(0)] — H(q))

| |
Natural and Expectation parameters of
an exponential family distribution g

Deep Learning algorithms can be obtained by
1. Choosing an appropriate approximation g,
2. Giving away the “global” property of the rule

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-

conjugate models to inferences in conjugate models.” Alstats (2017). 25



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.

26



Gradient Descent from Bayes

Gradient descent: ¢ <— 0 — pV4(0)
Bayes Learn Rule: m < m — pV,,£(m)
[ “Global” to “local’| 1M <= M — pV 1 g [£(6)]
Eg[(0)] = (m) | X« X\ — pV, (E,[6(6)] — H(q))
Derived by choosing Gaussian with fixed covariance

" Gaussian distribution q(0) := N(m, 1) A Using
Natural parameters Ai=m stochastic
Expectation parameters 1 := Eq[0] = m gradients,

_Entropy H(q) :=log(2m)/2 | we get SGD

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2019) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf) 27



https://emtiyaz.github.io/papers/learning_from_bayes.pdf

Newton’s Method from Bayes
Newton’s method: 6 < 6 — H, " [Val(0)]

(Sm — (1 —=p)Sm — pVg, (9)Eq[€(0)]
59 = AP T o YD)
e N— U (LW (B, E®q) (—V.H(g) =)

Derived by choosing a multivariate Gaussian
1 R
)

[ Gaussian distribution ¢(8) := N (6|m, S
Natural parameters A= {Sm,—S/2}
_ Expectation parameters 1. := {Eq(0),Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). )8



Newton’s Method from Bayes

Newton’s method: 6 < 6 — H, ' [V/(0)]
Set p=1toget m <+ m — H_ [V, 0(m)]

‘m < m - pS™ Vil (my [“Global” to “Iocal’}

S (1—p)S+pH, Eq[£(6)] ~ £(m)

Express in terms of gradient and Hessian of loss:
Vi, (6)Eq[0(0)] = By[V(6)] — 2E,[Ho]m

Vi, 007)Eq[€(0)] = Eq[Ho)

[Sm — (1 —p)Sm — pVi, 9)Eq[£(0)] J
S+ (1—p)S— pQVEq(eeT)EqW@)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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RMSprop/Adam from Bayes

Bayesian Learning rule for
RMSprop multivariate Gaussian

s (1=p)s+p[VUO)]* S« (1—p)S+ p(Ho)
0 < 60— a(\/s+ 5)_166(9) m +— m — oS 'Vel(0)

To get RMSprop, make the following choices
* Choose Gaussian with diagonal covariance
* Replace Hessian by square of gradients

* Add square root for scaling vector

For Adam, use a Heavy-ball term with KL
divergence as momentum (Appendix E in [1])

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).



Summary

* Gradient descent is derived using a Gaussian with fixed
covariance, and estimating the mean

* Newton’s method is derived using multivariate Gaussian
* RMSprop is derived using diagonal covariance

* Adam is derived by adding heavy-ball momentum term
* For “ensemble of Newton”, use Mixture of Gaussians [1]

* To derive DL algorithms, we need to switch from a
“global” to “local” approximation E,[/(0)] ~ ¢(m)

* Then, to improve DL algorithms, we just need to add
some “global” touch to the DL algorithms

. Lin, Wu, Mohammad Emtiyaz Khan, and Mark Schmidt. "Fast and Simple Natural-Gradient Variational
Inference with Mixture of Exponential-family Approximations." ICML (2019).

31



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.



Bayes as Optimization

p(D|0)p(0) (
91D — () := —log p(DI|0)p(8 )]
PUOID) = T D10 p(0)d0

= arg min ]Eq(e) £(6)] = H(q)

qEZ’ ; Entropy

All distribution  Distribution

. 7]
q

= Eq[€(0)] +Eqllog ()] =K, {log e@(@)}

k — ¢.(0) x e~ x p(D|0)p(0) « p(0|D) y

Good news: This holds for a generic loss function!

Zellner (1988), Bissiri, et al. (2016), Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006) .



Bayes with Approximate Posterior

argmin E, ) [0(8)] — H(q)
qer q? Entropy

All distribution  Distribution

Restrict the set of distribution from P to Q

. 3
arg min 20y ()] — H(q)

This is known as Variational Inference, but along
with the Bayesian learning rule, it enables us to
derive many more algorithms (including Bayes’
rule). So this is not just a method, but a principle.



Conjugate Bayesian Inference from
Bayesian Principles

Ex: Linear model, Kalman filters, HMM, etc.
5(9) = — logp(plg)p((g) _ —)\T(é’) __ Sufficient

statistics of q

(0):=(y—X0)" (y—X0)+~0'6
=-20"(XTy)+ Tr[00" (XX +~I)] + cnst

— B [0(0)] = ~App = V,E,[(0)] = —Ap
A A— pWIABAO)] + H(a)) = I\ =Xp

Forward-backward, SVI, Variational message passing
etc. are special cases of the same Bayesian principles

Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).



Laplace Approximation

Derived by choosing a multivariate Gaussian, then
running the following Newton’s update

‘m <+ m— pS~IV,,0(m)

LS%(1—,0)54—,0Hm y

Bayesian principles we discussed are general
principles to derive learning algorithms

Calling them variational inference limits their scope!



Learning-Algorithms from Bayesian
Principles
Bayesian learning rule: A < A\ — oV, (E,[¢(0)] — H(q))

Given a loss, we can recover a variety of learning
algorithms by choosing an appropriate g

— Classical algorithms: Least-squares, gradient descent, Newton’s
method, Kalman filters, Baum-Welch, Forward-backward, etc.

— Bayesian inference: EM, [Laplace’s method, SVI, VMP.
— | Deep learning: SGD, RMSprop, Adam.

— Reinforcement learning: parameter-space exploration, natural
policy-search.

— Continual learning: Elastic-weight consolidation.
— Online learning: Exponential-weight average.

— Global optimization: Natural evolutionary strategies, Gaussian
homotopy, continuation method & smoothed optimization.

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2019) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf)
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https://emtiyaz.github.io/papers/learning_from_bayes.pdf

Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.

38



Uncertainty Estimation for
Deep Learning



Uncertainty for Robust Decisions

1000 - , Uncertainty:
100\ ..... . “What the
=y o model does
(- 101 v N
O not know”
CDT 1 . , — : . - —
o M’o 5
" * ' Choose less
> . .
0011 | risky options!
0.001 4
' cact. Avoid data
" 45 50 55 60 65 20 725 80 85 90 95 bias with
Magnitude of Earthquake uncertainty!

Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise” 40



Uncertainty Estimation for Image

segmentation
Uncertainty

e {1 — 7 17

o l{ g 3 ] b
SN VIRE S o
N 4 | S
> X }-

4 ' p-l
A K
N o £

F e i

i |

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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(Some) Bayesian Deep Learning
Methods

* SGD based (MC-dropout [1], SWAG [2],
Laplace [3])
— Pros: Scales well to large problems
— Cons: Not flexible
* Variational inference methods [1, 2]
A= A= pVa (Eqll(0)] —H(q))
— Pros: Enable flexible distributions
— Cons: Do not scale to large problems (ImageNet)

1. Gal and Ghahramani. "Dropout as a bayesian approximation...” ICML. 2016.

2. Maddox, Wesley, et al. "A simple baseline for bayesian uncertainty in deep learning." arXiv (2019).

3. Ritter et al. "A scalable laplace approximation for neural networks." (2018).
4. Graves, Alex. "Practical variational inference for neural networks." NeurlPS (2011).
5. Blundell, Charles, et al. "Weight uncertainty in neural networks." ICML (2015).

42



Scaling up VI to ImageNet

VOGN, an Adam-like algorithm, for uncertainty

Iteration 1

Entropy (VOGN)

10 10
5-- 5
™~ ™
5 5
2 0- g0
-5- B et -5
& — Adam
rf. —— VOGN | |
: ‘ -5
-5 0 5
Input 1 Input 1

0.68

0.66

0.64

0.62

0.60

0.58

0.56

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Variational Online Gauss-Newton

* Improve RMSprop with the Bayesian “touch”
— Remove the “local” approximation E,[¢(0)] =~ ¢(m)
— Use a second-order approximation
— No square root of the scale

* Improve VOGN by using deep learning tricks

— Momentum, batch norm, data augmentation etc

RMSprop VOGN
g < V() g < V(0), where 0 ~ N (m,o?)
s« (1 —p)s+ pg° s (1= p)s+ p(Zig;)
0+ 0—a(/s+d) g mem—als+) " Vel(0)
0% (s+~)7 !

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).



Adam to VOGN

“Adam” to “VOGN” in two lines of code change.

import torch
+import torchsso

train_loader = torch.utils.data.DataLoader({train_datasct)
vodel = MLP()

-optimizer = torch.optim.Adam{model.parameters())
+optimizer = torchsso.optim.VOGN(model, dataset_size=len(train_loader.dataset))

Available at https://github.com/team-approx-bayes/dl-with-bavyes

Uses many practical tricks of DL to scale Bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

Image
Segmentation

Uncertainty
(entropy of
class probs)

i

(By Roman Bachmann)+



VOGN on ImageNet

State-of-the-art performance and convergence rate,
while preserving benefits of Bayesian principles

707

> 60}

>

O

(©

3 50+

(©)

(0]

S 40t

S —— SGD

f_g 30¢ —— Adam

—— VOGN

20 20 40 60 80

epoch
1. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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BDL methods do not really know that they
are performing badly under dataset shit

0.8-

>507 T=T==-}T
0.6-
LD
= R
8 0.3- Method
002—_VII _Dpt 1 4 -
f N LL SVI EE Ensemb
< " 1 LL Dropout —TmpSIg
o 0.0- : . . ' |
1 2 3 4 5
Dataset Shift
_ Method
0.10- mmmm Vanilla IS Dropout
I L SVI I Ensemble
LLI 0.08- m———71 LL Dropout mEEEEE Temp Scaling
ﬁ-l) '0.06
0.04 -
Vo e =l .
-l-l

0.00- I i
4 5

Dataset Shift

1. Ovadia, Yaniv, et al. "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under
Dataset Shift." NeurlPS (2019). 48



Resources for Uncertainty in DL

 Yarin Gal’s tutorial (http://bdl101.ml/)
* Benchmarks by OATML (http://bdlb.ml/)

List of Benchmarks

Bayesian Deep Learning Benchmarks (BDL Benchmarks or bdlb for short), is an open-scurce framework that ams to
bridge the gap between the design of deep prebabilistic machine learning meodels and their application ta real-werld

protlemns, Our currently supported benchmarks are:
¢ Diabetic Retinapathy Diagnosis (in alpha , fallowing Leibig et al.)

Deterministic

Meoente Cardo Drapeut (tellewing Gal and Ghahramani, 2015)
s Mean-Feld Varationzl Inference (following Paterson and Andersan, 18987, Wen et al., 2018)
# Deep Ensembles (following Lakshminarayanan et al., 2016)
+ Ensemble MC Dropout {follovdng Smith and Gal, 2018)

Autonomous Vehicle's Scena Sagmentation {In pre—alpha | tollowing Mukhot at al.)
Galaxy Zoo (in pre-alpha , following Walmsley et al )

Fishyscapes (in pre-zlgha , following Blum et al.)

49


http://bdl101.ml/
http://bdlb.ml/

Challenges in Uncertainty Estimation

* For non convex problem

— Different local
minima correspond
to various solutions

— Local approximations
only capture “local
uncertainty”

e Solutions

— More flexible
approximations?

50



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.

51



Importance of Data Examples

Which examples are most important for the
classifier”? Red circle vs Blue circle.




Model view vs Data view

Bayes “automatically” defines data-Importance

Data
view
] .I.. O °‘
e s 5
-'. [] ¢
° O ? :"‘
« G,

(By Roman Bachmann)



DNN to GP

DNN Posterior Approx.

¢4 (x)

1. Khan et al., Approximate Inference Turns Deep Networks into Gaussian Processes, NeurUPS, 2019
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“Global” to “Local”

Posterior approximations connect “global’
parameters (e.g. DNN weights) to “local”
parameters (e.g. data examples)

N
E 1
Z yzaf@ X ) ~~ Z _Q[gz _ sz(CIZ‘Z)TQ]Q
—+ neural network 1=1 IZ | |

“Dual” variables

The local parameters can be seen as “dual”
variables that define the “importance” of the data

1. Khan et al. "Fast dual variational inference for non-conjugate latent gaussian models." ICML (2013).

2. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019).
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Most Important

Least Important
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Least Important

Most Important

57



Similarity (Kernel) Matrix

O~ MI O IO b XN o

VWA HLWN~O

I 3e+4

2e+4
le+4
Oe+0

-le+4

-2e+4

-3e+4

Kij = ¢; ¢;

For DNN, with a
specific Gaussian
approximation,
we obtain Neural
Tangent Kernel

1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019). 58



Model Selection

Tune hyper parameters with GP Marginal likelihood

Regularization parameter NN width
—— train loss 8 —— train loss 140
0.3 — test. loss | 200 Q test loss -§
= Train MargLik T 03\ —— Train MargLik =
— Train ELBO 8 130 £
w 0.2 T A =
5 a0
£ 120 ©
0 S
0.1 3 0.1 &
120 & 110
1072 10! 10° 10! 10° 10 10 10°

hyperparameter ¢ width
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Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.

60



Towards Life-Long Learning

Continual and active learning
(unpublished)

61



Continual Learning
/X

Update Deep
Network

Standard
Deep
Learning

Select a random
’, subset of images
|

Continual Learning: past classes never revisited

Observe Update Observe Update
categories Deep categories Deep
Network Network

---p| Dogvs.Cat |L_5 o Lion vs. Tiger > . 5

g E ' ’ I

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the
national academy of sciences 114.13 (2017): 3521-3526.




Continual Learning with Bayes

‘oc"f‘bos . p(Dl‘e)p(e)
5 p(OID1) =

Set the prior to the previous
posterior and recompute:

_ p(D2|0)p(0]|D1)
| p(D2|0)p(0|Dy)do

Computing posterior is challenging, so we can use
posterior approximations

p(9|p27 Dl)

63



(Some) Regularization-based
Continual Learning Methods

* Elastic-weight consolidation (EWC) [1]
—Based on a diagonal Laplace approximation
—[2] considers structured Laplace

« Synaptic Intelligence (Sl) [3]

» Variational Continual learning (VCL) [4]
—Based on variational inference

« With better approximations, we expect accuracy
to improve, but unfortunately we don’t see this!

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS (2017).
2. Ritter et al. "Online structured laplace ... for overcoming catastrophic forgetting." NeurlPs. 2018.

3. Zenke et al. "Continual learning through synaptic intelligence." ICML, 2017 .
4. Nguyen, Cuong V., et al. "Variational continual learning." arXiv preprint arXiv:1710.10628 (2017).



Principle is Broken: Better

Approximation don’t give better results!

0.80

o
~3
Ot

=
3
=

Validation accuracy

0.65

I N o)
VCL
3 —F—— Sew
"""""""" o S
% 5 .6 © o

Taskl Task?2 Task3 Task4 Taskb Task6

65



VOGN improves the gap

0.80

o
~3
ot

0.70

Validation accuracy

0.65

(o)
I R - O
o VOGN
: —§—— 8 ovoL
SN © 100 R S O EWC
% 8 9 Q Si
____________ 0 ----Separate
o —dJoint

Taskl Task?2 Task3 Task4 Taskb Task6
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Functional Regularization of
Memorable Past (FROMP)

ldentify, memorize, and regularize the past using
Laplace Approximation (similar to EWC)

)&%
1 (A

AN AT
/:.:..).l ©

@

S0

S
\&:',. 3,

., R 4»‘. %,

) 9 N
(@]
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) XY J
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s

|

Task 1 o




Validation accuracy

FROMP improves over EWC!

080 ©O |
- ®
5 VOGN
0.75 é —é— o] VCL
L ‘ol NN N o EWC
O Sl
0.70 % ____8_ ______ 8 o ----Separate
O —Joint
0.65

Taskl Task? Task3 Task4 Taskb Task6
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Validation accuracy

FROMP improves over EWC!

0.80| © Q 0
— ©  © FROMP
O VOGN
0.75 g 0 —“'é“' o) = VCL
Q- 5 Q EWC
0.70 % 8 .8 o o S
________ ----Separate
? —Joint
0.65

Taskl Task?2 Task3 Task4 Taskb Task6
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Challenges in Continual Learning with
Bayesian Approaches

« Computing exact posterior is not tractable

« Approximations do not always behave the way we
want them to

— They can miss important information from the past and
lead to forgetting

« Working with the data space could be one
solution.

* There are plenty of non-Bayesian solutions and
many promising

— Links to Bayesian principles?



Summary of Continual
Learning

Better approximations should give
better performance (or at least we
should aim for that)
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Active Deep Learning

Select “Important” examples while training with Adam

Epoch 0

(By Roman Bachmann)



Bayesian Principles: Theory,
Derivation, and Related Works

Step A: Express Bayes rule as optimization
Step B: Introduce posterior approximation

Step C: Estimate approximations using the
Bayesian learning rule
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References for Bayes as Optimization

arg min E,0)£(0)] — H(q)

* Bayesian statistics

1.Jaynes, Edwin T. "Information theory and statistical mechanics." Physical review (1957)

2.Zellner, A. "Optimal information processing and Bayes's theorem." The American
Statistician (1988)

3. Bissiri, Pier Giovanni, Chris C. Holmes, and Stephen G. Walker. "A general framework for
updating belief distributions." RSS: Series B (Statistical Methodology) (2016)

 PAC-Bayes

4.Shawe-Taylor, John, and Robert C. Williamson. "A PAC analysis of a Bayesian
estimator." COLT 1997.

5.Alquier, Pierre. "PAC-Bayesian bounds for randomized empirical risk
minimizers." Mathematical Methods of Statistics 17.4 (2008): 279-304.

Online-learning (Exponential Weight Aggregates)

6.Cesa-Bianchi, Nicolo, and Gabor Lugosi. Prediction, learning, and games. 2006.

* Free-energy principle

7.Friston, K. "The free-energy principle: a unified brain theory?." Nature neuroscience (2010)
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References for Posterior

Approximations

argmin K, ) 0(0) — H(q)
oo . qe O
 Variational inference

1.Hinton, Geoffrey, and Drew Van Camp. "Keeping neural networks simple by minimizing the
description length of the weights." COLT 1993.

2.Jordan, Michael I., et al. "An introduction to variational methods for graphical
models." Machine learning 37.2 (1999): 183-233.

* Entropy-regularized / Maximum-entropy RL

3. Williams, Ronald J., and Jing Peng. "Function optimization using connectionist
reinforcement learning algorithms." Connection Science 3.3 (1991): 241-268.

4.Ziebart, Brian D. Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. Diss. figshare, 2010. (see chapter 5)

* Parameter-Space Exploration in RL

5.Ruckstiess, Thomas, et al. "Exploring parameter space in reinforcement learning." Paladyn,
Journal of Behavioral Robotics 1.1 (2010): 14-24.

6. Plappert, Matthias, et al. "Parameter space noise for exploration." arXiv preprint arXiv:
1706.01905 (2017)

7..Fortunato, Meire, et al. "Noisy networks for exploration." arXiv preprint arXiv:
1706.10295 (2017).
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More References for Posterior

Approximaftions
Evolution strategy 8 118 o) [£(0)

1.Wierstra, Daan, et al. "Natural evolution strategies." 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence). IEEE, 2008.

Gaussian Homotopy

2.Mobahi, Hossein, and John W. Fisher Ill. "A theoretical analysis of optimization by
Gaussian continuation." Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

Smoothing-based Optimization

3.Leordeanu, Marius, and Martial Hebert. "Smoothing-based optimization." 2008 IEEE
Conference on Computer Vision and Pattern Recognition. |IEEE, 2008.

Graduated Optimization

4.Hazan, Elad, Kfir Yehuda Levy, and Shai Shalev-Shwartz. "On graduated optimization for
stochastic non-convex problems." International conference on machine learning. 2016.

Stochastic Search

5.Zhou, Enlu, and Jiagiao Hu. "Gradient-based adaptive stochastic search for non-
differentiable optimization." IEEE Transactions on Automatic Control 59.7 (2014):
1818-1832.
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Bayesian Learning Rule and Related
Works

min B, ) [£(0)] — H(qg)

qe 9

Bayes learning rule: A < A — pV, (E,[¢(0)] — H(q))
Natural-Gradient VI: X« X\ — pF, 7'V, (E,[¢(8)] — H(q))

N Fisher Information Matrix

Also equivalent to a mirror-descent algorithm.The
Geometry of the mirror-descent is defined by the
log partition function of the posterior approximation.

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).
2. Raskutti, Garvesh, and Sayan Mukherjee. "The information geometry of mirror descent." IEEE

Transactions on Information Theory 61.3 (2015): 1451-1457. .



References for Step C.:
Natural-Gradient VI

1.Sato, Masa-aki. "Fast learning of on-line EM algorithm." Technical Report, ATR Human
Information Processing Research Laboratories (1999).

2.Sato, Masa-Aki. "Online model selection based on the variational Bayes." Neural
computation 13.7 (2001): 1649-1681.

3.Winn, John, and Christopher M. Bishop. "Variational message passing." Journal of Machine
Learning Research 6.Apr (2005): 661-694.

4.Honkela, Antti, et al. "Approximate Riemannian conjugate gradient learning for fixed-form
variational Bayes." Journal of Machine Learning Research 11.Nov (2010): 3235-3268.

5.Knowles, David A., and Tom Minka. "Non-conjugate variational message passing for
multinomial and binary regression." NeurlPS. (2011).

6.Hoffman, Matthew D., et al. "Stochastic variational inference." JMLR (2013).

7.Salimans, Tim, and David A. Knowles. "Fixed-form variational posterior approximation
through stochastic linear regression." Bayesian Analysis 8.4 (2013): 837-882.

8. Sheth, Rishit, and Roni Khardon. "Monte Carlo Structured SVI for Two-Level Non-
Conjugate Models." arXiv preprint arXiv:1612.03957 (2016).

9.Khan and Lin. "Conjugate-computation variational inference: Converting variational
inference in non-conjugate models to inferences in conjugate models.” Alstats (2017).

10.Khan and Nielsen. "Fast yet simple natural-gradient descent for variational inference in
complex models." (2018) ISITA.

11.Zhang, Guodong, et al. "Noisy natural gradient as variational inference." ICML (2018).
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Black-Box VI & Bayesian Learning rule

Bayes learning rule: A «+— A — pV , (E,[£(0)] — H(q))
Black-Box VI[1]: X < X — pV (E,[¢(8)] — H(q))

Black-box VI is more generally applicable (beyond
exponential-family), but we cannot derive learning-
algorithms from it (even for conjugate Bayesian
models)

1. Ranganath, Rajesh, Sean Gerrish, and David Blei. "Black box variational inference." Artificial Intelligence
and Statistics. 2014.



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.



Open Challenges

Deep Learning + Bayes Learning

— Principles of “trial and error” and “bayes”
together

How to achieve Life-long deep learning?
How to compute better posterior approx?
How to compute higher-order gradients?



Towards Life-long learning

* For life-long learning, we need
— Perception: how you want to see the world?
— Action: what you want to see in the world?
* Posterior approximation connects the two
— Models are representation of the world
— Approximations are representation of the model
— They help us learn the model through actions
— Act to appropriately “fill” the data space

1.Friston, K. "The free-energy principle: a unified brain theory?." Nature neuroscience (2010)



Learning-Algorithms from
Bayesian Principles

Coming soon!
A preliminary version is at

https://emtiyaz.github.io/papers/
learning_from_bayes.pdf

Havard Rue (KAUST)
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