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Uncertainty

Quantifies	the	confidence	in	the	
prediction	of	a	model,	i.e.,	how	much	

it	does	not	know.
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Example:	Which	is	a	Better	Fit?
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Real	data	from	Tohoku	(Japan).	Example	taken	from	Nate	Silver’s	book	“The	signal	and	noise” 4



Example:	Which	is	a	Better	Fit?
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When	the	
data	is	scarce
and	noisy,	
e.g.,	in	
medicine,	
and	robotics.



Outline	of	the	Talk

• Uncertainty	is	important
– E.g.,	when	data	are	scarce,	missing,	unreliable	etc.

• Uncertainty	computation	is	difficult
– Due	to	large	model	and	data	used	in	deep	learning

• This	talk:	fast	computation	of	uncertainty
– Bayesian	deep	learning
–Methods	that	are	extremely	easy	to	implement
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Uncertainty in	Deep	Learning

Why	is	it	difficult	to	estimate	it?
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A	Naïve	Method
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Bayesian	Inference
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Bayes’	rule	:

Intractable	integral

p(✓|D) =
p(D|✓)p(✓)R
p(D|✓)p(✓)d✓

Posterior	
distribution

Narrow Wide



Approximate	Bayesian	Inference
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Variational Inference:	Approximate	the	
posterior	by	a	Gaussian	distribution

VarianceMean

Optimize	using	gradient	methods	(SGD/Adam)
– Bayes	by	Backprop (Blundell	et	al.	2015),	Practical	VI	(Graves	et	al.	2011),	

Black-box	VI	(Rangnathan et	al.	2014)	and	many	more….

Computation	and	memory	intensive,	and	
require	substantial	implementation	effort



Fast	Computation	of	
(Approximate)	Uncertainty
Approximate	by	a	Gaussian	distribution,	

and	find	it	by	“perturbing”	the	
parameters	during	backpropagation
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Fast	Computation	of	Uncertainty
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1. Select	a	minibatch
2. Compute	gradient	using	backpropagation
3. Compute	a	scale	vector	to	adapt	the	learning	rate
4. Take	a	gradient	step

✓  ✓ + learning rate ⇤ gradientp
scale + 10�8

Adaptive	learning-rate	method	(e.g.,	Adam)

NY

i=1

p(yi|f✓(xi)) ✓ ⇠ N (✓|0, I)



Fast	Computation	of	Uncertainty
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1. Select	a	minibatch
2. Compute	gradient	using	backpropagation
3. Compute	a	scale	vector	to	adapt	the	learning	rate
4. Take	a	gradient	step

0.	Sample	𝜖 from	a	standard	normal	distribution

NY

i=1

p(yi|f✓(xi))

✓temp  ✓ + ✏ ⇤
p
N ⇤ scale + 1

✓  ✓ + learning rate ⇤ gradient + ✓/Np
scale + 1/N

✓ ⇠ N (✓|0, I)

Variational Adam	(Vadam)



Illustration:	Classification
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Logistic	regression	
(30	data	points,	2	
dimensional	input).

Sampled	from	
Gaussian	mixture	
with	2	components



Adam	vs	Vadam
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For	both	algorithms,
Minibatch of	5

Learning_rate =	0.01
Prior	precision	=	0.01

Adam

Vadam (mean)

Vadam (samples)



Why	does	this	work?

• This	algorithm	is	obtained	by	replacing	
“gradients”	by	“natural	gradients”.
– See	our	ICML	2018	paper.

• The	scaling	in	natural	gradient	is	related	to	
the	scaling	in	Newton	method.	

• An	approximation	to	the	Hessian	results	in	
Adam.

• Some	caveats:	Choose	small	minibatches,	
better	results	are	obtained	with	VOGN.
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Faster,	Simpler,	and	More	Robust
Regression	on	Australian-Scale	dataset	using	deep	neural	
nets	for	various	number	of	minibatch size.
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Existing	Method	(BBVI)
Our	method	(Vadam)
Our	method	(VOGN)



Faster,	Simpler,	and	More	Robust
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Results	on	MNIST	digit	classification	(for	various	values	of	
Gaussian	prior	precision	parameter	λ)

Existing	Method	(BBVI)
Our	method	(Vadam)



Deep	Reinforcement	Learning
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No	Exploration	(SGD)
Reward	=	2860

Exploration	using	Vadam
Reward	=	5264



Reduce	Overfitting	with	Vadam
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Vadam shows	
consistent	
train-test	
performance,	
while	Adam	
overfits when	
N	is	small	

BNN	
classification	
on	a1a	- a9a	
datasets	

Adam	TestAdam	Test

Adam	Train Adam	Train

Adam	Test

Adam	Train

Vadam Test	and	train Vadam Test	and	train

Vadam Test	and	train Adam	Test

Adam	Train
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Avoiding	
Local	

Minima
An	example	
taken	from	
Casella	and	

Robert’s	book.

Vadam reaches	
the	flat	

minima,	but	GD	
gets	stuck	at	a	
local	minima.

Optimization	by	smoothing,	Gaussian	homotopy/blurring	etc.,	Entropy	SGLD	etc.



Summary

• Uncertainty	is	important,	especially	when	the	
data	is	scarce,	missing,	unreliable	etc.

• We	can	obtain	uncertainty	cheaply	with	very	
little	effort
– Bayesian	deep	learning

• It	works	reasonably	well	on	our	benchmarks.
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Open	Questions

• Quality	of	uncertainty	estimates
– Application	to	life	science?
– Check	out	the	“Bayesian	deep	learning”	workshop	
at	NIPS	2018.

• Estimating	various	types	of	uncertainty
–Model	uncertainty	vs	data	uncertainty	
– Applications	play	a	big	role	here

• Is	uncertainty	in	deep	learning	useful?
–Multiple	local	minima	make	it	difficult	to	establish
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Thanks!

https://emtiyaz.github.io
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