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The Goal of My Research

“Io understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”



Human Learning:

At the age of 6
months, learning by
actively and
sequentially
collecting limited and
correlated data.




Converged

at the age
of

12 months




Transfer
Knowledge

at the age
of 14
months




Human learning -~ Deep learning

Humans can learn from Machines require large
limited, sequential, amount of 1ID data, and
correlated data, with a don’t really understand
clear understanding of the world and cannot
the world. reason about it.

My current research focuses on reducing this gap!



Learning-Algorithms from
Bayesian Principles

Practical Bayesian principles

— To design/improve/generalize learning-algorithms.

— By computing “posterior” distribution over unknowns.
Generalization of many existing algorithms,

— Classical (least-squares, Newton, HMM, Kalman.. etc).

— Deep Learning (SGD, RMSprop, Adam).

— Gaussian Processes (GPs).
Helps us design new algorithms

— Reinforcement, online, continual learning, reasoning..
Impact: Everything with one common principle.



Learn i ng by BayeSian Principles

Learning by optimization: 6 < 6 — pH ~'Vl(0)

Learning by Bayes: A < (1 — p)A — pV, E, [¢(0)]
| e

Natural and Expectation parameters of g
e.g., Gaussian distribution

Natural parameters {V 'm,V '} q(0) := N(0m,V)

mean parameters 2



Learning by Bayes

Learning by optimization: 6 < 6 — pH 'V ¢(6)

Learning by Bayes: A < (1 —p)A — pV K, [£(0)]

. /
Natural and Expectation parameters of g

Alstats 2017 | — Classical algorithms:h_east-squares, Newton’s method, Kalman
- filters, Baum-Welch, Forward-backward, etc.

— Bayesian inference: EM, Laplace’s method, SVI, VMP.
ICML 2018 — Deep learning: SGD, RMSprop, Adam.

NeurlPS 2018 4 — Reinforcement learning: parameter-space exploration, natural
policy-search.

— Continual learning: Elastic-weight consolidation.
— Online learning: Exponential-weight average.

— Global optimization: Natural evolutionary strategies, Gaussian
homotopy, continuation method & smoothed optimization.

— List incomplete...
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RMSprop

Neural Network
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Uncertainty in Deep Learning

(by Kendall et al. 2017)

Uncertainty
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Adam vs Our Method (on Logistic-Reg)

Iteration 1

- Adam

— Our method
(mean)

Our method
(samples)

M =5,
Rho = 0.01,
Gamma = 0.01



Input 2

Adam vs Our Method (on Neural Nets)

Epoch O

4

ICML 2018

— Adam

— QOurs
(mean)

Ours
(samples)

(By Runa E.)
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Practical DL with Bayes (on ImageNet)
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Out-of-Distributions Test

In-distribution

Out-of-distribution
I

FPR:0.88 AUC:0.80

— FPR:0.82 AUC:0.80
— FPR:0.88 AUC:0.70
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Deep Reinforcement Learning
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Deep-Learning as GP inference

NN Model:

Gaussian Approx:
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How Does This Advance Al?

» Posterior Approximations are essentially
representation of old data.

— eg, Gaussians represent 2nd-order statistics.

* This representation can be employed
— To avoid forgetting (continual learning).
— To select examples (active learning).

— To interact with the world (reinforcement
learning).

— To intervene (causal/interpretable learning).



Bayesian
Principles

Summary
Past Present

Active
learning
Bayesian

Inference Continual

learning

Bayesian

deep learning AL,
Controls,

Bandits
Gaussian
Processes Online

learning

Unsupervised
(VAE)
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A 5 page review

Fast yet Simple Natural-Gradient Descent for
Variational Inference in Complex Models

Mohammad Emtiyaz Khan
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
emtiyaz.khan@riken.jp

Abstract—Bayesian inference plays an important role in ad-
vancing machine learning, but faces computational challenges
when applied to complex models such as deep neural networks.
Variational inference circumvents these challenges by formulating
Bayvesian inference as an optimization problem and solving it
using gradient-based optimization. In this paper, we argue in
favor of natural-gradient approaches which, unlike their gradient-
based counterparts, can improve convergence by exploiting the
information geometry of the solutions. We show how to derive fast
yet simple natural-gradient updates by using a duality associated
with exponential-family distributions. An attractive feature of
these methods is that, by using natural-gradients, they are able
to extract accurate local approximations for individual model
components. We summarize recent results for Bayesian deep
learning showing the superiority of natural-gradient approaches
over their gradient counterparts.

Index Terms—Bayesian inference, variational inference, nat-
ural gradients, stochastic gradients, information geometry,
exponential-family distributions, nonconjugate models.

Didrik Nielsen
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
didrik.nielsen @riken.jp

prove the rate of convergence [7]-19]. Unfortunately, these
approaches only apply to a restricted class of models known
as conditionally-conjugate models, and do not work for non-
conjugate models such as Bayesian neural networks.

This paper discusses some recent methods that generalize
the use of natural gradients to such large and complex non-
conjugate models. We show that, for exponential-family ap-
proximations, a duality between their natural and expectation
parameter-spaces enables a simple natural-gradient update.
The resulting updates are equivalent to a recently proposed
method called Conjugate-computation Variational Inference
(CVI) [10]. An attractive feature of the method is that it
naturally obtains local exponential-family approximations for
individual model components. We discuss the application
of the CVI method to Bayesian neural networks and show
some recent results from a recent work [11] demonstrating
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