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The Goal of My Research

“To understand the fundamental principles of 
learning from data and use them to develop 
algorithms that can learn like living beings.”
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Human Learning:
At the age of 6 

months, learning by 
actively and 
sequentially 

collecting limited and 
correlated data.



Converged 
at the age 

of 
12 months
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Transfer 
Knowledge
at the age 

of 14 
months



Human learning        Deep learning
Humans can learn from 

limited, sequential, 
correlated data, with a 
clear understanding of 

the world.
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Machines require large 
amount of IID data, and 
don’t really understand 
the world and cannot 

reason about it.

My current research focuses on reducing this gap!



Learning-Algorithms from 
Bayesian Principles

• Practical Bayesian principles 
– To design/improve/generalize learning-algorithms.
– By computing “posterior” distribution over unknowns.

• Generalization of many existing algorithms,
– Classical (least-squares, Newton, HMM, Kalman.. etc).
– Deep Learning (SGD, RMSprop, Adam).
– Gaussian Processes (GPs).

• Helps us design new algorithms
– Reinforcement, online, continual learning, reasoning..

• Impact: Everything with one common principle.
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Learning-Algorithms by Bayesian Principles
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Learning by optimization:

Learning by Bayes:

Natural and Expectation parameters of q
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Learning by Bayes
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Learning by optimization:

Learning by Bayes:

– Classical algorithms: Least-squares, Newton’s method, Kalman 
filters, Baum-Welch, Forward-backward, etc.

– Bayesian inference: EM, Laplace’s method, SVI, VMP.
– Deep learning: SGD, RMSprop, Adam.
– Reinforcement learning: parameter-space exploration, natural 

policy-search.
– Continual learning: Elastic-weight consolidation.
– Online learning: Exponential-weight average.
– Global optimization: Natural evolutionary strategies, Gaussian 

homotopy, continuation method & smoothed optimization.
– List incomplete…

Natural and Expectation parameters of q
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Expectation params

Least Squares
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likelihood prior
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(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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Uncertainty in Deep Learning
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(by Kendall et al. 2017)

Uncertainty

PredictionTrue Segments

Image

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
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Figure 1: Comparing VOGN [22], a natural-gradient VI method, to Adam and SGD, training ResNet-
18 on ImageNet. The two left plots show that VOGN and Adam have similar convergence behaviour
and achieve similar performance in about the same number of epochs. VOGN achieves 67.38% on
validation compared to 66.39% by Adam and 67.79% by SGD. Run-time of VOGN is 76 seconds per
epoch compared to 44 seconds for Adam and SGD. The rightmost figure shows the calibration curve.
VOGN gives calibrated predictive probabilities (the diagonal represents perfect calibration).

We demonstrate practical training of deep networks by using recently proposed natural-gradient VI38

methods. These methods resemble the Adam optimiser, enabling us to leveraging existing techniques39

for initialisation, momentum, batch normalisation, data augmentation, and distributed training. As a40

result, we obtain similar performance in about the same number of epochs as Adam when training41

many popular deep networks (e.g., LeNet, AlexNet, ResNet) on datasets such as CIFAR-10 and42

ImageNet. See Fig. 1 for Imagenet. The results show that, despite using an approximate posterior, the43

training methods preserve the benefits of Bayesian principles. Compared to standard deep-learning44

methods, the predictive probabilities are well-calibrated and uncertainties on out-of-distribution45

inputs are improved. Our work shows that practical deep learning is possible with Bayesian methods46

and aims to support further research in this area.47

Related work. Previous VI methods, notably by Graves [15] and Blundell et al. [4], require signifi-48

cant implementation and tuning effort to perform well, e.g., on convolution neural networks (CNN).49

Slow convergence is found to be problematic for sequential problems [43]. There appears to be no50

reported results with complex networks on large problems, such as ImageNet. Our work solves these51

issues by borrowing deep-learning techniques and applying them to natural-gradient VI [22, 51].52

In their paper, Zhang et al. [51] also employed data augmentation and batch normalisation for a53

natural-gradient method called Noisy K-FAC (see Appendix A) and showed results on VGG on54

CIFAR-10. However, a mean-field method called noisy Adam was found to be unstable with batch55

normalisation. In contrast, we show that a similar method, called Variatonal Online Gauss-Newton56

(VOGN), proposed by Khan et al. [22], works well with such techniques. We show results for57

distributed training with noisy K-FAC on Imagenet, but do not provide extensive comparisons. Many58

of our techniques can be used to speed-up noisy K-FAC too, which is promising.59

Many other approaches have recently been proposed to compute posterior approximations by training60

deterministic networks [44, 36, 37]. Similarly to MC-dropout, the posterior approximation is not61

flexible and it is difficult to improve the accuracy of the posterior approximations. On the other hand,62

VI offers a much more flexible alternative to apply Bayesian principles to deep learning.63

2 Deep Learning with Bayesian Principles and Its Challenges64

The success of deep learning is partly due to the availability of scalable and practical methods for65

training deep neural networks (DNNs). Network training is formulated as an optimisation problem66

where a loss between the data and the DNN’s predictions is minimised. For example, in a supervised67

learning task with a dataset D of N inputs xi and corresponding outputs yi of length K, we minimise68

a loss of the following form: ¯̀(w) + �w
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Figure 5: Histograms of predictive entropy for out-of-distribution tests for ResNet-18 trained on
CIFAR-10. Going from left to right, the inputs are: the in-distribution dataset (CIFAR-10), followed
by out-of-distribution data: SVHN, LSUN (crop), LSUN (resize). Also shown are the AUROC metric
(higher is better) and FPR at 95% TPR metric (lower is better), averaged over 3 runs. We clearly see
that VOGN’s predicitive entropy is generally low for in-distribution and high for out-of-distribution
data, but this is not the case for other methods. Solid vertical lines indicate the mean predictive
entropies. The standard deviations are small and so not reported.

are obtained using the point estimate of the weights. We compare the probabilities using the240

following metrics: validation negative log-likelihood (NLL), area under ROC (AUROC) and expected241

calibration curves (ECE) [39, 16]. For the first and third metric, a lower number is better, while for242

the second, a higher number is better. See Appendix G for an explanation of these metrics. Results243

are summarised in Table 1. VOGN shows competitive performance in most cases. For AUROC, on244

all but one CIFAR-10 experiment (AlexNet without DA), VOGN performs the best or at least it is245

among the best. Adam performs the worst, but is surprisingly good for CIFAR-10/ResNet-18. We246

also show calibration curves [7] in Figure 1 and Appendix H. Across all datasets and architectures,247

with the exception of LeNet-5, VOGN usually has better calibration curves and better ECE than248

competing approaches. Adam is consistently over-confident, with its calibration curve below the249

diagonal. Conversely, MC-dropout is usually under-confident. On ImageNet however, MC-dropout250

performs well, but it takes an excessively tuned dropout rate to achieve this.251

Our final result is to compare performance on out-of-distribution datasets. When testing on datasets252

that are different from the training datasets, predictions should become more uncertain. We use253

experimental protocol from the literature [17, 31, 8, 32] to compare VOGN, Adam and MC-dropout254

on CIFAR-10. We also borrow metrics from other works [17, 30] and show predictive entropy255

histograms and also report AUROC and FPR at 95% TPR. Ideally, we would want the entropy to be256

high on out-of-distribution data and low on in-distribution data. Please see Appendix I for further257

details on the datasets and metrics. Our results are summarised in Figure 5 and Appendix I. On258

ResNet-18 and AlexNet, VOGN performs better or as well as both Adam and MC-dropout. VOGN’s259

predictive entropy histograms show the desired behaviour: a spread of entropies for the in-distribution260

data, and high entropies for out-of-distribution data. VOGN has correspondingly better metrics261

(AUROC and FPR at 95% TPR). However, on LeNet-5, we observe the same result as before: Adam262

and MC-dropout both perform well. Additionally, MC-dropout’s predictive entropies are generally263

high (particularly in-distribution), indicating MC-dropout has too much noise.264

5 Conclusions265

We successfully train deep networks with a natural-gradient variational inference method, VOGN,266

on a variety of architectures and datasets, even scaling up to ImageNet. This is made possible due267

to similarity of VOGN to Adam, enabling us to boost performance by borrowing deep-learning268

techniques. Our test accuracies and convergence rates are comparable to SGD and Adam. Unlike269

them, however, VOGN retains the benefits of Bayesian principles, with well-calibrated uncertainty270

and good performance on out-of-distribution data. Better uncertainty estimates open up a whole range271

of potential future experiments, for example, small data experiments, active learning, adversarial272

experiments, and sequential decision making or continual learning. Another potential avenue for273

research is to consider structured covariance approximations.274
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predictive entropy histograms show the desired behaviour: a spread of entropies for the in-distribution260

data, and high entropies for out-of-distribution data. VOGN has correspondingly better metrics261

(AUROC and FPR at 95% TPR). However, on LeNet-5, we observe the same result as before: Adam262

and MC-dropout both perform well. Additionally, MC-dropout’s predictive entropies are generally263

high (particularly in-distribution), indicating MC-dropout has too much noise.264

5 Conclusions265

We successfully train deep networks with a natural-gradient variational inference method, VOGN,266

on a variety of architectures and datasets, even scaling up to ImageNet. This is made possible due267

to similarity of VOGN to Adam, enabling us to boost performance by borrowing deep-learning268

techniques. Our test accuracies and convergence rates are comparable to SGD and Adam. Unlike269

them, however, VOGN retains the benefits of Bayesian principles, with well-calibrated uncertainty270

and good performance on out-of-distribution data. Better uncertainty estimates open up a whole range271

of potential future experiments, for example, small data experiments, active learning, adversarial272

experiments, and sequential decision making or continual learning. Another potential avenue for273

research is to consider structured covariance approximations.274
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On OpenAI Gym Cheetah with DDPG 
with DNN with [400,300] ReLU

Vadam(noise using
 natural-gradients)

SGD (noise using 
standard gradients)

Reward 2038

Reward 5264

Ruckstriesh et.al.2010, Fortunato et.al. 2017, Plapper et.al. 2017

SGD (no noise)

ICML 2018
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Figure 1: This figure illustrates how variational inference (VI) turns a DNN into a GP. Figure (a)
shows 100 two-dimensional inputs xi with two classes, along with the predictions of DNN with
513 parameters. We use a variational Gaussian approximation. Our theoretical results show that
the approximation is equivalent to the posterior of a GP regression model with kernel k(xi,xj) :=
�(xi)>�(xj) where �(x)> 2 R513 is the feature map obtained using the Jacobian of the DNN (see
Theorem 2). Figure (b) shows the feature matrix whose columns are �(xi), and Figure (c) shows
the GP kernel (classes are grouped and marked with different colors along the axes). In Figure (d),
we show the posterior mean of the GP where we see a clear separation between the two classes.
Surprisingly, the border points A and D in (a) are also at the boundary in (d).

1.1 Related Work36

The equivalence between infinitely-wide neural networks and GPs was originally discussed by Neal37

[14]. Subsequently, many works derived explicit expressions for the GP kernel corresponding to38

neural networks ([18], [3], [6]) and their deep variants ([4], [11], [5], [16]). These works use a prior39

distribution on weights and derive kernels by averaging over the prior. Our work differs from these40

works in the fact that we use the posterior approximations to relate DNNs to GPs. Unlike these41

previous results, our results hold for DNNs with finite width.42

A GP kernel we derive is equivalent to the recently proposed neural Tangent Kernel (NTK) [7], which43

is obtained by using the Jacobian of the DNN outputs. For randomly initialized trajectories, the NTK44

converges in probability to a deterministic kernel as the DNN width goes to infinity and remains45

asymptotically constant during training. Jacot et al. [7] motivate the NTK by using kernel gradient46

descent, and surprisingly the NTK appears in our work with an entirely different approach. Due47

to connections to the NTK, we expect similar properties for our kernel. Our approach additionally48

shows that by using different approximate inference methods we can obtain other types of kernels.49

In a recent work, Lee et al. [12] derive the mean and covariance function corresponding to the GP50

induced by the NTK. Unfortunately, the model does not really correspond to inference in a GP model51

(see Section 2.3.1 in their paper). Our approach does not have this issue and we can express Gaussian52

approximations on DNN as inference in a GP regression model.53

2 Deep Neural Networks (DNNs) and Gaussian Processes (GPs)54

The goal of this paper is to present a theoretical relationship between training methods of DNNs55

and GPs. DNNs are typically trained by minimizing an empirical loss between the data and the56

predictions. For example, in supervised learning with a dataset D := {(xi,yi)}Ni=1 of N examples57

of input xi 2 RD and output yi 2 RK , we can minimize a loss of the following form:58

¯̀(D,w) :=
NX

i=1

`i(w) + 1
2�w

>w, where `i(w) := `(yi, fw(xi)), (1)

where fw(x) 2 RK denotes the DNN outputs with weights w 2 RP , `(y, ŷ) denotes a loss function59

between an output y and its prediction ŷ which is twice differentiable and strictly convex in ŷ (e.g.,60
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�(xi)>�(xj) where �(x)> 2 R513 is the feature map obtained using the Jacobian of the DNN (see
Theorem 2). Figure (b) shows the feature matrix whose columns are �(xi), and Figure (c) shows
the GP kernel (classes are grouped and marked with different colors along the axes). In Figure (d),
we show the posterior mean of the GP where we see a clear separation between the two classes.
Surprisingly, the border points A and D in (a) are also at the boundary in (d).
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shows 100 two-dimensional inputs xi with two classes, along with the predictions of DNN with
513 parameters. We use a variational Gaussian approximation. Our theoretical results show that
the approximation is equivalent to the posterior of a GP regression model with kernel k(xi,xj) :=
�(xi)>�(xj) where �(x)> 2 R513 is the feature map obtained using the Jacobian of the DNN (see
Theorem 2). Figure (b) shows the feature matrix whose columns are �(xi), and Figure (c) shows
the GP kernel (classes are grouped and marked with different colors along the axes). In Figure (d),
we show the posterior mean of the GP where we see a clear separation between the two classes.
Surprisingly, the border points A and D in (a) are also at the boundary in (d).
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between an output y and its prediction ŷ which is twice differentiable and strictly convex in ŷ (e.g.,60
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shows 100 two-dimensional inputs xi with two classes, along with the predictions of DNN with
513 parameters. We use a variational Gaussian approximation. Our theoretical results show that
the approximation is equivalent to the posterior of a GP regression model with kernel k(xi,xj) :=
�(xi)>�(xj) where �(x)> 2 R513 is the feature map obtained using the Jacobian of the DNN (see
Theorem 2). Figure (b) shows the feature matrix whose columns are �(xi), and Figure (c) shows
the GP kernel (classes are grouped and marked with different colors along the axes). In Figure (d),
we show the posterior mean of the GP where we see a clear separation between the two classes.
Surprisingly, the border points A and D in (a) are also at the boundary in (d).
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How Does This Advance AI?

• Posterior Approximations are essentially 
representation of old data.
– eg, Gaussians represent 2nd-order statistics.

• This representation can be employed
– To avoid forgetting (continual learning).
– To select examples (active learning).
– To interact with the world (reinforcement 

learning).
– To intervene (causal/interpretable learning).
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