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Uncertainty	in	Deep	Learning

To	estimate	the	confidence	in	the	
predictions	of	a	deep-learning	system
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Uncertainty	for	Image	Segmentation
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Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic
uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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(taken	from	Kendall	et	al.	2017)

UncertaintyPredictionTruthImage

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic
uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.

2

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic
uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.

2



Variational Inference

4

• Compute	an	approximate	posterior	
distribution	using	an	optimization	algorithm

• Variational Inference	(VI)	using	gradient	
methods	(SGD/Adam)
– Gaussian	VI:	Bayes	by	Backprop (Blundell	et	al.	2015),	Practical	VI	(Graves	

et	al.	2011),	Black-box	VI	(Rangnathan et	al.	2014)	and	many	more….

• This	talk:	VI	using	natural-gradient	methods	
(faster	and	simpler than	gradients	methods)
– Khan	&	Lin	(AIstats 2017),	Khan	et	al.	(ICML	2018),	Khan	&	Nielsen	

(ISITA2018)	



Outline

• Backgound
– Bayesian	model	and	Variational Inference	(VI)
– VI	using	gradient	descent
– VI	using	natural-gradient	descent

• Simple	natural-gradients
• Fast	computation	of	natural-gradients
• Results	on	Bayesian	deep	learning	and	RL
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BACKGROUND

Variational Inference
Gradients
Natural	Gradients
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Variational Inference
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q�(w) = ExpFamily(�)p(w|D) ⇡

p(w|D) =

Q
i p(Di|w)p(w)R Q
i p(Di|w)p(w)dw

Neural	Network

ExpFamily(𝜂#)

min
�

DKL

h
q�(w)kp(w|D)

i

⌘ max

�
L(�) Variational objective

weightsBayes’	rule:



VI	using	Natural-Gradient	Descent
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F (�) := Eq�

h
r log q�(w)r log q�(w)

>
iFisher	Information	Matrix	(FIM)

Natural	Gradients

Gradient

Gradient	Descent:

Natural-Gradient	
Descent:

� �+ ⇢r�L(�)

� �+ ⇢F (�)�1r�L(�)

r̃�L(�)



“Simple”	Natural-Gradients

By	using	expectation	
parameterization of	ExpFamily
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Expectation/Moment	Parameters
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µ(�) := Eq� [�(w)]

Wainwright	and	Jordan,	2006

[Sufficient	Statistics]
E.g.,	Gaussian	has	two	moments

rµL = F (�)�1r�L := r̃�L
r�L = F (µ)�1rµL := r̃µL

Gradient Natural-Gradient

Eq� [ww
>] := µ2

Eq� [w] := µ1



Dually-Flat	Riemannian	Structure
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See	Amari’s	book	2016 Figure	from	Wainwright	and	Jordan,	2006

�

rµL = F (�)�1r�L := r̃�L
r�L = F (µ)�1rµL := r̃µL

Gradient Natural-Gradient

Easy

Difficult



NatGrad Descent as	Message	Passing
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A generalization	of	Kalman filtering,	Sum-product,	etc.,	
Variational Message	Passing	(Winn	and	Bishop	2005),	Stochastic	
variational inference	(Hoffman	et	al.	2013).

Khan	and	Lin	2017,	Khan	and	Nielsen	2018
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Locally,	add	all	the	natural	gradients
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Fast	Gaussian	Approximation	for	
Deep	Neural	Networks
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1. Select	a	minibatch
2. Compute	gradient	using	backpropagation
3. Compute	a	scale	vector	to	adapt	the	learning	rate
4. Take	a	gradient	step

✓  ✓ + learning rate ⇤ gradientp
scale + 10�8

0.	Sample	𝜖 from	a	standard	normal	distribution
Adaptive	learning-rate	method	(e.g.,	Adam)

✓temp  ✓ + ✏ ⇤
p
N ⇤ scale + 1

✓  ✓ + learning rate ⇤ gradient + ✓/Np
scale + 1/N

✓ ⇠ N (✓|0, I)

Natural-Gradient	VI	->Variational Adam	(Vadam)

(w = 𝜃)
NY

i=1

p(Di|✓)



Illustration:	Classification
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Logistic	regression	
(30	data	points,	2	
dimensional	input).

Sampled	from	
Gaussian	mixture	
with	2	components



Adam	vs	Vadam
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For	both	algorithms,
Minibatch of	5

Learning_rate =	0.01
Prior	precision	=	0.01

Adam

Vadam (mean)

Vadam (samples)



Faster,	Simpler,	and	More	Robust
Regression	on	Australian-Scale	dataset	using	deep	neural	
nets	for	various	number	of	minibatch size.
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Existing	Method	(BBVI)
Our	method	(Vadam)
Our	method	(VOGN)



Faster,	Simpler,	and	More	Robust
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Results	on	MNIST	digit	classification	(for	various	values	of	
Gaussian	prior	precision	parameter	λ)

Existing	Method	(BBVI)
Our	method	(Vadam)



Deep	Reinforcement	Learning
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No	Exploration	(SGD)
Reward	=	2860

Exploration	using	Vadam
Reward	=	5264



Summary

• For	exp-family	approximation,	natural-gradients	
can	be	computed	using	expectation	parameters	
(“simple”	updates	in	many	cases)

• Messages	in	variational message-passing	are	
natural-gradients	in	the	expectation	parameters
– Extends	to	non-conjugate	factors.
– Gives	local	approximations	such	that	variational
objective	is	maximized

• Fast	computation	is	possible	in	some	cases	(e.g.,	
Gaussian	approximation).

19



References

20

Available	at	https://emtiyaz.github.io/publications.html



Thanks!

Slides,	paper,	and	code	available	at	
http://emtiyaz.github.io

21


