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Bayesian	Deep	Learning

Compute	averages	over	the	samples	from	the	
posterior	distribution
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Approximate	Bayesian	Inference

Convert	Bayesian	inference	to	an	optimization	
problem	using	Variational Inference	(VI),	and	then	
use	gradient-based	methods for	optimization	
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Bayes	by	Backprop (Blundell	et	al.	2015),	Practical	VI	(Graves	et	al.	2011),	Black-
box	VI	(Rangnathan et	al.	2014)	and	many	more….
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Approximate	Bayesian	Inference	requires	more	
computation,	memory,	and	implementation	

effort	than	MLE
Is	it	possible	to	reduce	these	costs?

By	replacing	gradients	with	natural-gradients
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Maximum	Likelihood	Estimation	(MLE)
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RMSprop for	MLE
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Gaussian	Mean-Field	Variational Inference
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p(✓) = N (0, I/�) Known	prior	precision

p(✓|D) =
p(D|✓)p(✓)R
p(D|✓)p(✓)d✓⇡ q(✓) = N (µ,�2) Covariance	matrix	=	diag(𝜎")
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MLE	vs	Gradient-based	VI
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RMSprop for	Max-likelihood Gradient-based	Variational Inference
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(Graves	et	al.	2011,	Blundell	et	al.	2015)
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MLE	vs	Natural-Gradient	VI
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RMSprop for	Max-likelihood Natural-Gradient	VI	(Khan,	Lin	2017,	Khan,	Nielsen	2018)

Variational Online-Newton	(VON)	
Khan	et	al.	2017
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MLE	vs	Natural-Gradient	VI
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RMSprop for	Max-likelihood Natural-Gradient	VI	(Khan,	Lin	2017,	Khan,	Nielsen	2018)
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Variational Online	Gauss-Newton	(VOGN)	
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MLE	vs	Natural-Gradient	VI
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RMSprop for	Max-likelihood Natural-Gradient	VI	(Khan,	Lin	2017,	Khan,	Nielsen	2018)
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Variational Adam	(Vadam)
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Adam	for	Max-likelihood Vadam for	VI
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Summary:	Uncertainty	using	Adam

Perturb	the	weights	before	backprop.
Choose	a	small	minibatch size.
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Bayesian	logistic	regression	on
“Breast-Cancer”	(N=683,	D=8)

As	we	reduce	the	
minibatch size,	

Vadam gives	similar	
performance	as	

VOGN.
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1	layer	64	hidden	
Units	with	ReLu on	

Breast	Cancer	
[N=683,	D=10]

BBVI
Vadam
VOGN

VOGN	shows	fast	
convergence
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Fast	and	Scalable	Bayesian	Deep	Learning	
by	Weight-Perturbation	in	Adam	

Poster	tonight	(Hall	B	#190)
Code	available	at	https://github.com/emtiyaz/vadam/

Also	check	out	“Noisy	Natural-gradient	as	VI”	by	
Zhang	et	al.	at	this	conferene
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