Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam

Mohammad Emtiyaz Khan*

RIKEN Center for AI Project (AIP), Tokyo, Japan

Didrik Nielsen* (AIP RIKEN), Voot Tangkaratt* (AIP RIKEN), Wu Lin (UBC), Yarin Gal (University of Oxford), Akash Srivastava (University of Edinburgh)

*Equal Contribution

(Talk by Emtiyaz Khan) Bayesian Deep Learning using Weight-Perturbation in Adam (Poster #190)

Bayesian Deep Learning

Compute averages over the samples from the posterior distribution

Approximate Bayesian Inference

Convert Bayesian inference to an optimization problem using Variational Inference (VI), and then use gradient-based methods for optimization

Bayes by Backprop (Blundell et al. 2015), Practical VI (Graves et al. 2011), Blackbox VI (Rangnathan et al. 2014) and many more....

Approximate Bayesian Inference requires more computation, memory, and implementation effort than MLE

Is it possible to reduce these costs? By replacing gradients with natural-gradients

Maximum Likelihood Estimation (MLE)

$$\max_{\theta} \sum_{i=1}^{N} \log p(\mathcal{D}_i | \theta) \qquad \text{Log-likelihood}$$

RMSprop for MLE

 $\begin{aligned} \theta &\leftarrow \mu \\ g &\leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i} | \theta) \\ s &\leftarrow (1 - \beta) s + \beta g^{2} \\ \mu &\leftarrow \mu + \alpha \; \frac{g}{\sqrt{s + \delta}} \end{aligned}$

Backprop on minibatches

Scale vector (gradient-magnitude)

Adaptive gradient update

Gaussian Mean-Field Variational Inference

 $p(heta) = \mathcal{N}(0, I/\lambda)$ Known prior precision

 $p(\theta|\mathcal{D}) \approx q(\theta) = \mathcal{N}(\mu, \sigma^2)$ Covariance matrix = diag(σ^2)

$$\max_{\mu,\sigma^2} \mathcal{L}(\mu,\sigma^2) := \sum_{i=1}^{N} \mathbb{E}_q[\log p(\mathcal{D}_i|\theta)] - KL\Big[q(\theta) \| p(\theta)\Big]$$

Data-fit term Regularizer

MLE vs Gradient-based VI

$$\max_{\theta} \sum_{i=1}^{N} \log p(\mathcal{D}_i | \theta) \qquad \max_{\mu, \sigma^2} \mathcal{L}(\mu, \sigma^2) := \sum_{i=1}^{N} \mathbb{E}_q[\log p(\mathcal{D}_i | \theta)] - KL\Big[q(\theta) \| p(\theta)\Big]$$

RMSprop for Max-likelihood

 θ

 $\theta \leftarrow \mu$ $g \leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i} | \theta)$ $s \leftarrow (1 - \beta)s + \beta g^2$ $\mu \leftarrow \mu + \alpha \ \frac{g}{\sqrt{s+\delta}}$

Gradient-based Variational Inference

$$\mu \leftarrow \mu + \alpha \ \frac{\hat{\nabla}_{\mu} \mathcal{L}}{\sqrt{s_{\mu} + \delta}}$$
$$\sigma \leftarrow \sigma + \alpha \ \frac{\hat{\nabla}_{\sigma} \mathcal{L}}{\sqrt{s_{\sigma} + \delta}}$$
(Graves et al. 2011, Blundell et al. 2015)

7/13

(Talk by Emtiyaz Khan) Bayesian Deep Learning using Weight-Perturbation in Adam (Poster #190)

MLE vs Natural-Gradient VI

RMSprop for Max-likelihood

Natural-Gradient VI (Khan, Lin 2017, Khan, Nielsen 2018)

$$\begin{aligned} \theta &\leftarrow \mu \\ g &\leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i} | \theta) \\ s &\leftarrow (1 - \beta) s + \beta g^{2} \\ \mu &\leftarrow \mu + \alpha \; \frac{g}{\sqrt{s + \delta}} \end{aligned}$$

$$\begin{aligned} \theta &\leftarrow \mu + \epsilon, \text{ where } \epsilon \sim \mathcal{N}(0, Ns + \lambda) \\ g &\leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i} | \theta) \\ s &\leftarrow (1 - \beta)s + \beta \frac{1}{M} \sum_{i} \nabla_{\theta\theta}^{2} \log p(\mathcal{D}_{i} | \theta) \\ \mu &\leftarrow \mu + \alpha \; \frac{g + \lambda \mu / N}{s + \lambda / N} \end{aligned}$$

Variational Online-Newton (VON) Khan et al. 2017

MLE vs Natural-Gradient VI

RMSprop for Max-likelihood

Natural-Gradient VI (Khan, Lin 2017, Khan, Nielsen 2018)

Variational Online Gauss-Newton (VOGN)

MLE vs Natural-Gradient VI

RMSprop for Max-likelihood

Natural-Gradient VI (Khan, Lin 2017, Khan, Nielsen 2018)

$$\begin{aligned} \theta &\leftarrow \mu \\ g &\leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i} | \theta) \\ s &\leftarrow (1 - \beta) s + \beta g^{2} \\ \mu &\leftarrow \mu + \alpha \; \frac{g}{\sqrt{s + \delta}} \end{aligned}$$

$$\begin{aligned} \theta &\leftarrow \mu + \epsilon, \text{ where } \epsilon \sim \mathcal{N}(0, Ns + \lambda) \\ g &\leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i} | \theta) \\ s &\leftarrow (1 - \beta)s + \beta g^{2} \\ \mu &\leftarrow \mu + \alpha \; \frac{g + \lambda \mu / N}{\sqrt{s + \lambda} / N} \end{aligned}$$

Variational RMSprop (Vprop)

Variational Adam (Vadam)

Adam for Max-likelihood

Vadam for VI

$$\begin{split} \theta &\leftarrow \mu \\ g &\leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i} | \theta) \\ s &\leftarrow (1 - \beta) s + \beta g^{2} \\ m &\leftarrow (1 - \gamma) m + \gamma g \\ \hat{m} &\leftarrow m/(1 - (1 - \gamma)^{t}) \\ \hat{s} &\leftarrow s/(1 - (1 - \beta)^{t}) \\ \mu &\leftarrow \mu + \alpha \; \frac{\hat{m}}{\sqrt{\hat{s}} + \delta} \end{split}$$

 $\theta \leftarrow \mu + \epsilon$, where $\mathcal{N}(0, Ns + \lambda)$ $g \leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i} | \theta)$ $s \leftarrow (1 - \beta)s + \beta q^2$ $m \leftarrow (1 - \gamma)m + \gamma(q + \lambda \mu / N)$ $\hat{m} \leftarrow m/(1 - (1 - \gamma)^t)$ $\hat{s} \leftarrow s/(1-(1-\beta)^t)$ $\mu \leftarrow \mu + \alpha \ \frac{\hat{m}}{\sqrt{\hat{s}} + \lambda/N}$

(Talk by Emtiyaz Khan) Bayesian Deep Learning using Weight-Perturbation in Adam (Poster #190)

Summary: Uncertainty using Adam

Perturb the weights before backprop. Choose a small minibatch size.

Bayesian logistic regression on "Breast-Cancer" (N=683, D=8)

As we reduce the minibatch size, Vadam gives similar performance as VOGN.

(Talk by Emtiyaz Khan) Bayesian Deep Learning using Weight-Perturbation in Adam (Poster #190)

1 layer 64 hidden Units with ReLu on Breast Cancer [N=683, D=10]

VOGN shows fast convergence

(Talk by Emtiyaz Khan) Bayesian Deep Learning using Weight-Perturbation in Adam (Poster #190)

Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam

Poster tonight (Hall B #190) Code available at <u>https://github.com/emtiyaz/vadam/</u> Also check out "Noisy Natural-gradient as VI" by Zhang et al. at this conferene