Fast yet Simple Natural-Gradient Variational Inference in Complex Models

Mohammad Emtiyaz Khan

RIKEN Center for AI Project, Tokyo, Japan http://emtiyaz.github.io

Joint work with Wu Lin (UBC) Didrik Nielsen, Voot Tangkaratt (RIKEN) Yarin Gal (University of Oxford) Akash Srivastava (University of Edinburgh) Zuozhu Liu (SUTD, Singapore)

Bayesian Inference

Compute a probability distribution over the unknowns given the knowns "to know how much we don't know".

Bayesian Deep Learning

To improve many aspects of deep learning: data-efficiency, robustness, active learning, continual/online learning, exploration

Example

Uncertainty of depth estimates

Bayesian Inference is Difficult!

- Variational Inference (VI) using gradient methods (SGD/Adam)
 - Gaussian VI: Bayes by Backprop (Blundell et al. 2015), Practical VI (Graves et al. 2011), Black-box VI (Rangnathan et al. 2014) and many more....
- This talk: VI using natural-gradient methods (faster and simpler than gradients methods)
 - Khan & Lin (Alstats 2017), Khan et al. (ICML 2018), Khan & Nielsen (ISITA2018)

Arises in approximate Bayesian inference, reinforcement learning, stochastic search, discrete optimization Bayesian model VI using gradient descent Euclidean distance is inappropriate VI using natural-gradient descent

BACKGROUND

Approximate Bayesian Inference

$$p(\mathcal{D}|w) = \prod_{i=1}^{N} p(y_i | f_w(x_i)) \quad p(w) = \text{ExpFamily}(\eta_0)$$

$$p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{\int p(\mathcal{D}|w)p(w)dw} \quad \eta_0 = \left\{-\frac{1}{2}\Sigma^{-1}, \Sigma^{-1}\mu\right\}$$

$$\approx q_\lambda(w) = \text{ExpFamily}(\lambda) \quad \lambda = \left\{-\frac{1}{2}V^{-1}, V^{-1}m\right\}$$

$$\max_\lambda \mathcal{L}(\lambda) := \mathbb{E}_{q_\lambda} \left[\log \frac{p(w)}{q_\lambda(w)}\right] + \sum_{i=1}^{N} \mathbb{E}_{q_\lambda}[\log p(\mathcal{D}_i|w)]$$

Regularizer

Data-fit term

Arises in approximate Bayesian inference, reinforcement learning, stochastic search, discrete optimization

Optimization using Gradient Descent

Using Natural-Gradient Descent

Fisher Information Matrix (FIM)

$$F(\lambda) := \mathbb{E}_{q_{\lambda}} \left[\nabla \log q_{\lambda}(w) \nabla \log q_{\lambda}(w)^{\top} \right]$$

$$\max_{\lambda} \lambda^T \nabla_{\lambda} \mathcal{L}_t - \frac{1}{2\rho_t} (\lambda - \lambda_t)^T F(\lambda_t) (\lambda - \lambda_t)$$

$$\lambda_{t+1} = \lambda_t + \rho_t F(\lambda_t)^{-1} \nabla_\lambda \mathcal{L}_t$$

Natural Gradients: $\tilde{\nabla}_\lambda \mathcal{L}_t$

"Simple" Natural-Gradients

Part I

Natural-Gradients require computation of the FIM. Can we avoid this?

Khan & Lin (AI-Stats 2017), Khan & Nielsen (ISITA2018)

Expectation Parameters of Exp-Family

Wainwright and Jordan, 2006

Mean/expectation /moment parameters Sufficient statistics

$$\mu(\lambda) := \mathbb{E}_{q_{\lambda}}[\phi(w)]$$

$$\mathbb{E}_{q_{\lambda}}[w] = m$$
$$\mathbb{E}_{q_{\lambda}}[ww^{\top}] = mm^{\top} + V$$

NatGrad Descent == Mirror Descent

Raskutti and Mukherjee, 2015, Khan and Lin 2017, Hensman et al. 2012

 $\lambda_{t+1} = \lambda_t + \rho_t F(\lambda_t)^{-1} \nabla_\lambda \mathcal{L}_t$ $\max_{\mu} \mu^T \nabla_{\mu} \mathcal{L}_t - \frac{1}{\rho_t} KL[q_{\mu} \| q_{\mu_t}]$ $\nabla_{\mu} \mathcal{L}_t - \frac{1}{\rho_{\star}} (\lambda - \lambda_t) = 0$ $\nabla_{\mu} \mathcal{L}_{t} = F(\lambda_{t})^{-1} \nabla_{\lambda} \mathcal{L}_{t} := \tilde{\nabla}_{\lambda} \mathcal{L}_{t}$ $\nabla_{\lambda} \mathcal{L}_{t} = F(\mu_{t})^{-1} \nabla_{\mu} \mathcal{L}_{t} := \tilde{\nabla}_{\mu} \mathcal{L}_{t}$

Dually-Flat Riemannian Structure

See Amari's book 2016

Figure from Wainwright and Jordan, 2006

For variational inference, natural gradient wrt naturalparameters is computationally simpler than in the expectation parameter space (Hoffman et al. 2013)

Example: Penalized Linear Regression

$$\max_{\lambda} \mathcal{L}(\lambda) := \mathbb{E}_{q_{\lambda}} \left[\log \frac{p(w)}{q_{\lambda}(w)} \right] + \sum_{i=1}^{N} \mathbb{E}_{q_{\lambda}} [\log p(\mathcal{D}_{i}|w)]$$

λT

$$\mathbb{E}_{q_{\lambda}} \left[-\log q_{\lambda}(w) + \frac{\tau}{2} w^T w + \frac{1}{2} \sum_{i=1}^{N} (y_i - x_i^T w)^2 \right]$$

For terms in exp-family, this is linear in the expectation parameters!

Mean of q
$$(X^TX + \tau I)^{-1}X^Ty$$

Covariance of q

Gradient wrt Expectation Parameters

$$\begin{split} \max_{\lambda} \mathcal{L}(\lambda) &:= \mathbb{E}_{q_{\lambda}} \Big[\log \frac{p(w)}{q_{\lambda}(w)} \Big] + \sum_{i=1}^{N} \mathbb{E}_{q_{\lambda}} [\log p(\mathcal{D}_{i}|w)] \\ & \text{Conjugate} \end{split}$$

$$\begin{aligned} & \mathcal{L}(\lambda) &:= \mathbb{E}_{q_{\lambda}} \Big[\log \frac{p(w)}{q_{\lambda}(w)} \Big] + \sum_{i=1}^{N} \mathbb{E}_{q_{\lambda}} \Big[\log p(y_{i}|f_{w}(x_{i})) \\ & p(w) &= \mathbb{E}_{xp} \mathbb{F}_{xp} \mathbb{F}_{xp} \Big] \Big] \\ & \tilde{\nabla}_{\lambda} \mathcal{L} &= \nabla_{\mu} \mathcal{L} \\ & = \eta_{0} - \lambda \\ & \text{Conjugate} \\ & = \eta_{0} - \lambda + \sum_{i=1}^{N} \nabla_{\mu} \mathbb{E}_{q_{\lambda}} \Big[\log p(\mathcal{D}_{i}|w) \Big] \Big|_{\mu = \mu(\lambda)} \\ & \text{Nonconjugate} \\ & \text{Similar to SVI, Hoffmann et al. 2013} \end{split}$$

Natural-Gradients as Message Passing

Khan and Lin 2017, Khan and Nielsen 2018

$$\lambda_{t+1} = \lambda_t + \rho_t F(\lambda_t)^{-1} \nabla_\lambda \mathcal{L}_t$$

A generalization of Variational Message Passing (Winn and Bishop 2005) and stochastic variational inference (Hoffman et al. 2013) to nonconjugate models.

"Fast" Natural-Gradients

Deep Learning with Gaussian meanfield approximation

Natural-Gradient VI \approx Adam for MLE

Notation change: $\theta = w$, and $\lambda \neq$ natural parameter, but precision of the Gaussian prior, μ is not the expectation parameter but the mean of the Gaussian approximation

Gaussian Approximation

Gaussian prior

$$\max_{\mu,\sigma^2} \mathcal{L}(\mu,\sigma^2) := \mathbb{E}_q \Big[\log \frac{\mathcal{N}(\theta|0,\lambda I)}{\mathcal{N}(\theta|\mu,\sigma^2)} \Big] +$$

Non-Gaussian (DNN)
$$\sum_{i=1}^{N} \mathbb{E}_{q}[\log p(\mathcal{D}_{i}|\theta)]$$

Gaussian variational approximation

Natural-Gradient VI

$$\mu \leftarrow \mu - \beta \sigma^2 \, \nabla_{\mu} \mathcal{L}$$
$$\frac{1}{\sigma^2} \leftarrow \frac{1}{\sigma^2} + 2\beta \, \nabla_{\sigma^2} \mathcal{L}$$

Doubly Stochastic Approximation

MLE vs Natural-Gradient VI

RMSprop for Max-likelihood

$$\begin{aligned} \theta &\leftarrow \mu \\ g &\leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i} | \theta) \\ s &\leftarrow (1 - \beta) s + \beta g^{2} \\ \mu &\leftarrow \mu + \alpha \; \frac{g}{\sqrt{s + \delta}} \end{aligned}$$

Natural-Gradient VI (Khan, Lin 2017, Khan, Nielsen 2018)

$$\begin{split} \theta &\leftarrow \mu + \epsilon, \text{ where } \epsilon \sim \mathcal{N}(0, Ns + \lambda) \\ g &\leftarrow \frac{1}{M} \sum_{i} \nabla_{\theta} \log p(\mathcal{D}_{i} | \theta) \\ s &\leftarrow (1 - \beta) s + \beta g_{M}^{2} \sum_{i} \left[\nabla_{\theta}^{2} \theta \log p(\mathcal{D}_{i} | \theta) \right]^{2} \\ \mu &\leftarrow \mu + \alpha \; \frac{gg + \lambda \mu / N}{\sqrt{s} + \lambda N N} \end{split}$$

Variational Online-Newton (VON) Khan et al. 2017

Variational Online Gauss-Newton (VOGN)

Variational RMSprop (Vprop)

Variational Adam (Vadam)

Estimate Distributions using Weight-Perturbation in Adam

Choose a small minibatch size (see Theorem 1 in the ICML paper)

Results for Variational Inference

Quality of Posterior Approximation

VOGN uses Gauss-Newton with minibatch of size 1

Vadam uses Gradient-Magnitude with minibatch > 1

Bayesian logistic regression on "Breast-Cancer" (N=683, D=8)

As we reduce the minibatch size, Vadam gives similar performance as VOGN.

1 layer 64 hidden Units with ReLu on Breast Cancer [N=683, D=10]

VOGN shows fast convergence

Reduce Overfitting with VI

Results for Optimization

 $\max_{\lambda} \mathbb{E}_{q_{\lambda}(w)}[f(w)]$

Avoiding Local Minima

An example taken from Casella and Robert's book.

Vadam reaches the flat minima, but GD gets stuck at a local minima.

Optimization by smoothing, Gaussian homotopy/blurring etc., Entropy SGLD etc.

Parameter-Space Noise for Deep RL

Ruckstriesh et.al. 2010, Fortunato et.al. 2017, Plapper et.al. 2017

Summary

- Natural gradients exploit information geometry, but could be difficult to compute
- Simple updates can be obtained by using expectation parameterization

Messages passing

Fast updates for Bayesian neural networks
 – Implement using Adam

Related Work

- Natural-Gradient Methods for VI
 - Sato 2001, Honkela et al. 2010, Hoffman et al. 2013
- Gradient methods for VI
 - Rangnathan et al. 2014, Graves et al. 2011, Blundell et al. 2015, Salimans and Knowles 2013
- Zhang et al. ICML 2018
 - Very similar to our ICML paper and our previous work on Variational Adaptive Newton method.
- Mandt et al. 2017, SGD as VI.
- Global optimization methods
 - Optimization by smoothing, graduated optimization, Gaussian homotopy, etc.
 - Entropy-SGD, noisy networks for exploration etc.

References

https://emtiyaz.github.io

Fast yet Simple Natural-Gradient Descent for Variational Inference in Complex Models,

INVITED PAPER AT (ISITA 2018) M.E. KHAN and D. NIELSEN, [Pre-print]

Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam, (ICML 2018) M.E. KHAN, D. NIELSEN, V. TANGKARATT, W. LIN, Y. GAL, AND A. SRIVASTAVA, [ArXiv Version] [Code]

Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models, (AISTATS 2017) M.E. KHAN AND W. LIN [Paper] [Code for Logistic Reg + GPs] [Code for Correlated Topic Model]

Thanks!

https://emtiyaz.github.io