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Bayesian	Inference

Compute	a	probability	distribution	
over	the	unknowns	given	the	knowns	
“to	know	how	much	we	don’t	know”.
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Bayesian	Deep	Learning

To	improve	many	aspects	of	deep	learning:	
data-efficiency,	robustness,	active	learning,	

continual/online	learning,	exploration
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Example
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(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic
uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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(taken	from	Kendall	et	al.	2017)

Scene Uncertainty	of	depth	estimates



Bayesian	Inference	is	Difficult!
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Bayes’	rule:

Intractable	integral

• Variational Inference	(VI)	using	gradient	methods	
(SGD/Adam)
– Gaussian	VI:	Bayes	by	Backprop (Blundell	et	al.	2015),	Practical	VI	(Graves	et	al.	

2011),	Black-box	VI	(Rangnathan et	al.	2014)	and	many	more….

• This	talk:	VI	using	natural-gradient	methods	
(faster	and	simpler than	gradients	methods)
– Khan	&	Lin	(AIstats 2017),	Khan	et	al.	(ICML	2018),	Khan	&	Nielsen	(ISITA2018)	

ParametersData

p(w|D) =
p(D|w)p(w)R
p(D|w)p(w)dw



Arises	in	approximate	Bayesian	
inference,	reinforcement	learning,	

stochastic	search,	discrete	optimization
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BACKGROUND

Bayesian	model
VI	using	gradient	descent
Euclidean	distance	is	inappropriate
VI	using	natural-gradient	descent
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Approximate	Bayesian	Inference
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Neural	network
p(D|w) =

NY

i=1

p(yi|fw(xi)) p(w) = ExpFamily(⌘0)

⌘0 =
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Data-fit	termRegularizer
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p(w|D) ⇡

p(w|D) =
p(D|w)p(w)R
p(D|w)p(w)dw



Arises	in	approximate	Bayesian	
inference,	reinforcement	learning,	

stochastic	search,	discrete	optimization
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Optimization	using	Gradient	Descent
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�t+1 = �t + ⇢tr�Lt

= argmax
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Using	Natural-Gradient	Descent
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F (�) := Eq�

h
r log q�(w)r log q�(w)

>
i

max

�
�Tr�Lt �

1

2⇢t
(�� �t)

TF (�t)(�� �t)

�t+1 = �t + ⇢tF (�t)
�1r�Lt

r̃�Lt

Fisher	Information	Matrix	(FIM)

Natural	Gradients:



“Simple”	Natural-Gradients

Part	I
Natural-Gradients	require	computation	

of	the	FIM.	Can	we	avoid	this?
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Khan	&	Lin	(AI-Stats	2017),	Khan	&	Nielsen	(ISITA2018)	



Expectation	Parameters	of	Exp-Family
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Eq� [w] = m

Eq� [ww
>] = mm> + V

µ(�) := Eq� [�(w)]

Wainwright	and	Jordan,	2006

Sufficient	statistics
Mean/expectation
/moment	parameters	



NatGrad Descent	==	Mirror	Descent
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�t+1 = �t + ⇢tF (�t)
�1r�Lt

max

µ
µTrµLt �

1

⇢t
KL[qµkqµt ]

rµLt �
1

⇢t
(�� �t) = 0

Raskutti and	Mukherjee,	2015,	Khan	and	Lin	2017,	Hensman et	al.	2012

rµLt = F (�t)
�1r�Lt := r̃�Lt

r�Lt = F (µt)
�1rµLt := r̃µLt



Dually-Flat	Riemannian	Structure
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See	Amari’s	book	2016 Figure	from	Wainwright	and	Jordan,	2006

�

For	variational inference,	natural	gradient	wrt natural-
parameters is	computationally	simpler	than	in	the	
expectation	parameter	space	(Hoffman	et	al.	2013)



Example:	Penalized	Linear	Regression
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max

�
L(�) := Eq�
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log
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m := (XTX + ⌧I)�1XT yMean	of	q

Covariance	of	q

For	terms	in	exp-family,	this	is	linear	in	the	expectation	parameters!



Gradient	wrt Expectation	Parameters
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r̃�L = rµL

max

�
L(�) := Eq�

h
log

p(w)

q�(w)

i
+

NX

i=1

Eq� [log p(Di|w)]

p(w) = ExpFamily(⌘0)

p(D|w) =
NY

i=1

p(yi|fw(xi))

q�(w) = ExpFamily(�)

NonconjugateConjugate
(similar	to	SVI,	Hoffmann	et	al.	2013)

NonconjugateConjugate

= ⌘0 � � +

NX

i=1

rµEq� [log p(Di|w)]|µ=µ(�)



Natural-Gradients	as	Message	Passing
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A generalization	of	Variational Message	Passing	(Winn	

and	Bishop	2005) and	stochastic	variational inference
(Hoffman	et	al.	2013)	to	nonconjugate models.

Khan	and	Lin	2017,	Khan	and	Nielsen	2018

⇢t

"
⌘0 +

NX

i=1

rµEq� [log p(Di|w)]|µ=µ(�t)

#
�t+1 = (1� ⇢t)�t+

w
𝜂"

𝐷$ 𝐷% 𝐷&Natural	gradients
==	Local	natural	parameters

�t+1 = �t + ⇢tF (�t)
�1r�Lt



“Fast”	Natural-Gradients

Deep	Learning	with	Gaussian	mean-
field	approximation

Natural-Gradient	VI	≈ Adam	for	MLE
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Notation	change:	𝜃 = 𝑤,	and	𝜆 ≠ natural	parameter,	but	
precision	of	the	Gaussian	prior,	𝜇 is	not	the	expectation	
parameter	but	the	mean	of	the	Gaussian	approximation



Gaussian	Approximation
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Natural-Gradient	VI

µ µ� ��2 rµL
1

�2
 1

�2
+ 2� r�2L

Non-Gaussian	(DNN)
Gaussian	prior

Gaussian	variational
approximation

max

µ,�2
L(µ,�2

) := Eq

h
log

N (✓|0,�I)
N (✓|µ,�2

)

i
+

NX

i=1

Eq[log p(Di|✓)]



Doubly	Stochastic	Approximation
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Natural-Gradient	VI

µ µ� ��2 rµL
1

�2
 1

�2
+ 2� r�2L

Non-Gaussian	(DNN)Gaussian	prior

Gaussian	variational
approximation

Sample	a	𝜃 from	q	and	a	minibatch

𝑓/(𝜃)
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µ,�2
L(µ,�2
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log
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N (✓|µ,�2

)

i
+

NX
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Eq[log p(Di|✓)]
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X

i2M
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MLE	vs	Natural-Gradient	VI
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RMSprop for	Max-likelihood Natural-Gradient	VI	(Khan,	Lin	2017,	Khan,	Nielsen	2018)

Variational Online-Newton	(VON)	
Khan	et	al.	2017

✓  µ

g  1
M

X

i

r✓ log p(Di|✓)

s (1� �)s+ �g2

µ µ+ ↵
gp
s+ �

✓  µ+✏, where ✏ ⇠ N (0, Ns+ �)

g  1
M

X

i

r✓ log p(Di|✓)

s (1� �)s+ � 1
M

X

i

r2
✓✓ log p(Di|✓)

µ µ+ ↵
g+�µ/N

s+ �/N

Variational Online	Gauss-Newton	(VOGN)	

s (1� �)s+ � 1
M

X

i

h
r✓ log p(Di|✓)

i2
s (1� �)s+ �g2

Variational RMSprop (Vprop)

µ µ+ ↵
g+�µ/Np
s+ �/N

Variational Adam	(Vadam)



Estimate	Distributions	using	
Weight-Perturbation	in	Adam

Choose	a	small	minibatch size	(see	
Theorem	1	in	the	ICML	paper)

23



Results	for	Variational Inference
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Quality	of	Posterior	Approximation
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VOGN	uses
Gauss-Newton	with	
minibatch of	size	1

Vadam uses	Gradient-
Magnitude	with	
minibatch >	1
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Bayesian	logistic	regression	on
“Breast-Cancer”	(N=683,	D=8)

As	we	reduce	the	
minibatch size,	

Vadam gives	similar	
performance	as	

VOGN.
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VOGN
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1	layer	64	hidden	
Units	with	ReLu on	
Breast	Cancer	
[N=683,	D=10]

BBVI
Vadam
VOGN

VOGN	shows	fast	
convergence



Reduce	Overfitting	with	VI
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VI	shows	
consistent	
train-test	
performance,	
while	MLE	
overfits when	
N	is	small	

BNN	
classification	
on	a1a	- a9a	
datasets	

Adam	TestAdam	Test

Adam	Train Adam	Train

Adam	Test

Adam	Train

Vadam Test	and	train Vadam Test	and	train

Vadam Test	and	train Adam	Test

Adam	Train



Results	for	Optimization
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max

�
Eq�(w)[f(w)]
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Avoiding	
Local	

Minima
An	example	
taken	from	
Casella	and	

Robert’s	book.

Vadam reaches	
the	flat	

minima,	but	GD	
gets	stuck	at	a	
local	minima.

Optimization	by	smoothing,	Gaussian	homotopy/blurring	etc.,	Entropy	SGLD	etc.



Parameter-Space	Noise	for	Deep	RL
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On	OpenAI Gym	Cheetah	with	DDPG	
with	DNN	with	[400,300]	ReLU

VAdaGrad (noise	updated
with	natural-gradients)

SGD	(noise	updated	with	
standard	gradients)

Reward	3674

Reward	5264

Ruckstriesh et.al.2010,	Fortunato	et.al.	2017,	Plapper et.al.	2017

SGD	(no	noise	
injection)



Summary

• Natural	gradients	exploit	information	
geometry,	but	could	be	difficult	to	compute

• Simple	updates	can	be	obtained	by	using	
expectation	parameterization
–Messages	passing

• Fast	updates	for	Bayesian	neural	networks
– Implement	using	Adam
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Related	Work
• Natural-Gradient	Methods	for	VI

– Sato	2001,	Honkela et	al.	2010,	Hoffman	et	al.	2013
• Gradient	methods	for	VI

– Rangnathan et	al.	2014,	Graves	et	al.	2011,	Blundell	et	al.	2015,	
Salimans and	Knowles	2013

• Zhang	et	al.	ICML	2018	
– Very	similar	to	our	ICML	paper	and	our	previous	work	on	

Variational Adaptive	Newton	method.
• Mandt et	al.	2017,	SGD	as	VI.
• Global	optimization	methods

– Optimization	by	smoothing,	graduated	optimization,	Gaussian	
homotopy,	etc.

– Entropy-SGD,	noisy	networks	for	exploration	etc.
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