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Abstract

In this paper, we propose a new variational inference method for deep exponential-
family (DEF) models. Our method converts non-conjugate factors in a DEF model
to easy-to-compute conjugate exponential-family messages. This enables local
and modular updates similar to variational message passing, as well as stochastic
natural-gradient updates similar to stochastic variational inference. Such updates
make our algorithm highly suitable for large-scale learning. Our method exploits
the structure of the deep network and can be useful to reduce the variance of
stochastic methods for variational inference.

1 Introduction

In this paper, we propose a new variational inference method for deep exponential-family (DEF)
models. DEFs were recently proposed by Ranganath et al. (2015) and they contain many existing deep
models as special cases, e.g. Sigmoid Belief Network and Deep Latent Gaussian models. Inference
in these models is intractable due to non-conjugate factors. To solve this problem, variational
inference based on stochastic approximation is applied, e.g. Ranganath et al. (2015) use the black-box
variational inference method.

Such stochastic gradient-descent (SGD) methods extend the applicability of variational inference to
many intractable deep models (Ranganath et al., 2013; Salimans et al., 2013; Paisley et al., 2012;
Titsias and Lázaro-Gredilla, 2014), but they lack the modularity and efficiency of classical variational
inference methods such as variational message passing (VMP) (Winn and Bishop, 2005). For example,
the gradient estimation in SGD might have high-variance when computed naively without taking
the structure of the problem into account (Kingma and Welling, 2013). In contrast, message passing
algorithms can exploit the structure and can do efficient local computations. Unfortunately, VMP
does not apply to DEFs since DEFs contain non-conjugate factors.

In this paper, we derive a modular variational inference algorithm that combines stochastic methods
with message passing algorithms. Our method converts non-conjugate factors to easy-to-compute
conjugate exponential-family messages, thereby enabling updates similar to variational message
passing. The conversion is computationally efficient since it only requires local computations of
gradients at nodes. Moreover, our method enables the use of doubly-stochastic gradients, similar to
stochastic variational inference. Such local and stochastic updates make our algorithm suitable for
large-scale learning. Even with such updates, our method is guaranteed to converge.
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2 Conjugate-Computation Variational Inference (CVI)

Our algorithm for DEF is based on a variational inference method called conjugate-computation
variational inference2. Given a probabilistic model with a factor graph containing both conjugate and
non-conjugate terms, CVI computes a conjugate approximation of the non-conjugate terms, thereby
converting a non-conjugate problem into a conjugate problem. A stochastic variational inference on
the resulting conjugate problem is equivalent to a proximal-gradient step, which is guaranteed to
converge to a local maximum of the variational lower bound. The proximal-gradient step is also a
natural-gradient step making it suitable for variational inference Hoffman et al. (2013). We now give
a few details of the method.

Given a model p(y, z), where y is the data and z is the latent vector, we wish to estimate an
approximation q(z) to the posterior distribution p(z|y) by maximizing the following lower bound to
the log-marginal likelihood:

L(q) := E [log p(y, z)− log q(z)] (1)

We consider the case of a mean-field approximation q(z) =
∏
k q(zk) which factorizes over all

entries of z (the method itself applies to more general distributions, e.g. structured mean-field). Given
a posterior estimate qt(z) at the t’th iteration and a non-conjugate3 factor fa(z) of p(y, z), CVI
computes an exponential-family approximation of the factor fa in the t + 1’th iteration as shown
below:

fa(z) ≈
∏
k

ExpFam(zk, λ̃fa→zk), where λ̃fa→zk ← wiλ̃fa→zk + (1− wi)∇̂µk
Eqt [log fa] (2)

where ExpFam(zk, λ̃) denotes an (unnormalized) exponential-family distribution over zk with natural
parameter λ̃, the scalar wi ∈ (0, 1) is the step-size, and ∇̂µk

Eqt(log fa) is the stochastic gradient
w.r.t. the mean parameter µk of q(zk) at qt(zk). Given the above conjugate approximation at the t+1
iteration, CVI updates the posterior q(z) using a stochastic variational inference on the conjugate
model. The algorithm repeats these two steps until convergence, i.e. update λ̃fa→zk for all non-
conjugate nodes and factors, and compute q(z) on the conjugate approximation. An illustrative
example is shown in Figure 1.

The above approximation is very similar to Expectation Propagation (EP), but instead of doing
moment-matching as in EP, the CVI approximation maximizes the variational lower bound of (1).
The advantage of this approximation is that, unlike EP, it can handle stochastic updates, i.e. the
gradient estimates can be stochastic (need to be unbiased and bounded variance). In addition, the
non-conjugate factor can also be randomly selected. Once a factor’s approximation is updated, q(zk)
for all the variables zk in its neighborhood are updated. This enables stochastic updates where not
only the data can be selected at random but also nodes can be updated at random.

The above update corresponds to a stochastic proximal-gradient method for which convergence is
guaranteed under very mild continuity assumption of the lower bound. Connection to proximal-
gradient methods shows that our method is a natural-gradient method that uses a KL-divergence
instead of a Euclidean distance (see Khan et al. (2016) for details). Therefore, our method is
an extension of stochastic variational inference Hoffman et al. (2013) to non-conjugate models.
Because of this property, we expect our method to perform better than naive SGD based methods, e.g.
black-box variational inference Ranganath et al. (2013), that ignore the geometry of the variational
parameter space.

Another important difference with existing methods such as Ranganath et al. (2013) and Salimans
et al. (2013) is that, in our method, the gradient are averaged in λ̃ before updating the variational
parameter λ. Therefore our method is expected to be more stable during learning than existing
methods.

2This work is currently under submission.
3A factor is non-conjugate w.r.t. a variable zk when it does not take the same functional form as q(zk) with

respect to zk.
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Figure 1: Figure (a) shows an example of non-conjugate graphical model. A dashed red-line indicates
a non-conjugate relationship between the variable and factor, e.g. factor fe is non-conjugate with
respect to variable z4. We call such factors the non-conjugate factors (shown in red fb, fe, and fg)
and the neighboring nodes of these factors the non-conjugate nodes (shown in red z2, z3, z4, z6, and
z7). Figure (b) shows the approximate conjugate model obtained by using approximation shown in
(2). The algorithm uses stochastic variational inference on this conjugate model to update q(z). We
repeat these two steps until convergence.
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Figure 2: The left figure shows a non-conjugate factor of DEFs and the right figure shows the
conjugate approximation obtained using (2).

3 CVI for Deep Exponential-Family Models

We now show how CVI simplifies variational inference on DEFs. Given data points yn, a DEF model
has L layers of latent variables zn := {zn,1, zn,2, . . . , zn,L}, where zn,l for l’th layer is of length
Kl. Each layer has a parameter Wl whose column wl,k is assumed to follow an exponential-family
distribution with natural parameter ηwl,k

. Each entry in the top latent vector zn,Lis assumed to follow
an exponential-family distribution as well (denote its natural parameter by ηzn,L,k

). The subsequent
latent vectors are then sampled as shown below:

p(zn,l|zn,l+1,wl,k) =

Kl∏
k=1

ExpFaml

[
zn,l,k, gl(z

T
n,l+1wl,k)

]
, (3)

where gl are link functions. Finally, the latent vector zn,1 are combined with w0,d to model the d’th
dimension in yn.

Following Ranganath et al. (2015), we wish to find the following approximation (K0 is equal to the
length of yn):

q(z,w) =

[
L−1∏
l=0

Kl∏
k=1

ExpFaml(wl,k,λwl,k
)

][
N∏
n=1

L∏
l=1

Kl∏
k=1

ExpFaml(zn,l,k, λzn,l,k
)

]
(4)

The problem is non-conjugate due to factors fn,l,k := ExpFam[zn,l,k, gl(z
T
n,l+1,wl,k)] and we can

convert the problem to a conjugate one by projecting these factor into exponential family. The
expectation of the corresponding term in the lower bound is Eq[log fn,l,k] and it depends on the
parameters of the distributions q(zn,l,k), q(zn,l+1), and q(wl,k). Therefore, using (2) we can compute
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the following site-parameters by computing the gradient of the factor fn,l,k with respect to the mean
parameter of the above three distributions:

λ̃fn,l,k→zn,l,k
, λ̃fn,l,k→zn,l+1

, and λ̃fn,l,k→wl,k
. (5)

This step converts the non-conjugate factor fn,l,k into three conjugate factors as illustrated in Figure
2. The natural parameter of variables zn,l+1,k and wl,k can then be updated by summing the
contributions from all neighboring factors:

λwl,k
← ηwl,k

+

N∑
n=1

λ̃fn,l,k→wl,k
, λzn,l+1,k

← λ̃fn,l+1,k→zn,l+1,k
+

Kl∑
j=1

λ̃fn,l,j→zn,l+1,k
(6)

The above inference step is equivalent to inference in a conjugate exponential-family model. These
computations can be carried out locally at a node. The algorithm works as follows: we first initialize
λ̃fa→zk for all non-conjugate factors fa, and repeat the following two steps until convergence:

1. Randomly select a factor fn,l,k and update λ̃fn,l,k→u for all neighboring nodes u.
2. At all the neighboring nodes u of fa, update the natural parameter using (6).

4 Results

We present preliminary results on a one-layer Sigmoid Belief Network (SBN) using a very similar
setup as Titsias and Lázaro-Gredilla (2015). In SBN, each hidden variable zn,l,k is modeled by using
a Bernoulli distribution as shown below:

log p(zn,l,k|zn,l+1,wl,k) = zn,l,k(z
T
n,l+1wl,k)− log[1 + exp(zTn,l+1wl,k)] (7)

Additionally, we assume a Gaussian prior on wl,k. The second term above is known as the logistic-log
partition (LLP) function. This function makes the inference intractable.

As a baseline method, we use the Black-Box Variational Inference (BBVI) method of Ranganath et al.
(2013) to approximation the LLP function. We call this method the ‘Partial-BBVI’ method since we
only partially approximate the gradient using the black-box method. For variance reduction, we use
the method suggested in Salimans (2014) (see Eq. 8). The fully black-box method was too slow to
converge on the medium-size dataset we considered in our experiments, which is why we used the
Partial-BBVI method.

We also compare to the local expectation gradient method of Titsias and Lázaro-Gredilla (2015)
called ‘LeGrad’.

For CVI, we use the local expectation-gradient method to compute the gradient-approximation for
the LLP function. Note that computing gradients with respect to the mean parameter is trivial for
both Gaussian and Bernoulli distributions.

For all methods, we use Adam (Kingma and Ba, 2014) to take stochastic gradient steps. We set the
learning rate to 0.05, 0.6, and 0.1 respectively for Partial-BBVI, LeGrad, and CVI respectively. We
used a decay factor of 0.9 and 0.999 for the mean and variance respectively, and ε was set to 1e-8.
For Partial-BBVI, we used 20 samples to approximate the gradient, while for the other two methods
we used 1 sample from q(z) and 5 samples from q(w).

We compare on two datasets. The first dataset is the Voting dataset which contains Yes/No votes from
435 senators on 17 issues. The second dataset is a smaller version of the MNIST dataset containing a
total of 3000 binary images of size 28× 28. For the Voting dataset, we use half of the votes for 20%
of the senators as the test set. We use the batch method during training since the data size is small.
For MNIST, we use 1000 images for testing, treating half of each image as test entries. For this data,
we use a mini-batch of size 500 during training and a quarter of the pixels in the image randomly
selected at each iteration.

We report the following mean-absolute error in reconstructing the test set:

MAE :=
1

Nte

∑
n,d

|yn,d − ŷn,d| (8)
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Figure 3: MAE on the test set vs iterations on Voting and MNIST datasets.

where yn,d is a test entry, ŷn,d is its reconstruction by a method, and Nte is the total number of test
entries yn,d. We set ŷn,d = p(yn,d|Eq(z),Eq(w)). This prediction is an approximation that ignores
the variance, but we use it since it is cheap to compute in each iteration. A random coin flip gives an
error of about 0.5 and a lower error is an improvement over it.

Figure 3 shows the evolution of MAE for the two datasets. All algorithms start with the same initial
values (the first iteration is not shown in the figure). We observe that CVI gives a slightly lower test
error and is as fast as LeGrad to converge. Partial-BBVI is slowest to converge which is expected
due to high variance problem. A better performance of our method might be because of the fact
that our method is a natural-gradient method, although this observation needs further investigation
and multiple runs of our experiments are necessary to establish significance. However, looking at
the reconstructions of a few test images shown in Figure 4 we observe that CVI gives more crisp
reconstructions than the other methods. It is plausible that CVI is able to learn a better model, but
more experiments are necessary to confirm such claims.

5 Conclusions

In this paper, we propose a new variational inference method for deep exponential-family (DEF)
models. Our method enables local and modular updates similar to variational message passing, and
stochastic natural-gradient updates similar to stochastic variational inference. These two features
make our method highly suitable for large-scale variational inference.

Although we have considered DEFs in this paper, our method can potentially be applied to other
deep models. The current trend in deep generative models is to construct a deep model by adding
deep neural networks to existing probabilistic graphical model (e.g. Krishnan et al. (2015); Johnson
et al. (2016)). Our method is ideal for such scenarios where non-conjugacy is introduced due to the
inclusion of a deep network. We are also exploring application to variational auto-encoders where a
similar algorithm can be derived.
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(a) Partial-BBVI

(b) LeGrad

(c) CVI

Figure 4: Reconstructions of a few test images. The odd numbered columns show the actual images
and the even numbered columns show their reconstructions. We observe that CVI gives less blurry
reconstructions.
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