
Bayesian Deep Learning
Mohammad Emtiyaz Khan

RIKEN Center for AI Project, Tokyo
http://emtiyaz.github.io

Keywords

• Bayesian Statistics
– Gaussian distribution, Bayes’ rule

• Continues Optimization
– Gradient descent, Least-squares.

• Deep Learning
– Stochastic gradient descent, RMSprop

• Information Geometry
– Riemannian Manifold, Natural Gradients

2

The Goal of My Research

“To understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”

3

Learning by
exploring

at the age of 6
months

Converged
at the age

of
12 months

6

Transfer
Learning

at 14
months

The Goal of My Research

“To understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”

7

Bayesian Inference

• Compute the posterior distribution
– Instead of just a point estimate (e.g. MLE).

• A natural representation of all the past
information which can then be sequentially
updated with new information
– useful for active learning, sequential experiment

design, continual learning, RL.
– But also for global optimization, causality, etc.
– Eventually, for ML methods which can learn like

humans (data efficient, robust, causal).
8

Uncertainty in Deep Learning

To estimate the confidence in the
predictions of a deep-learning system

9

Example: Which is a Better Fit?

Red

57%

Fr
eq

ue
nc

y

Magnitude of Earthquake

Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise”10

Blue

43%

Example: Which is a Better Fit?
Fr

eq
ue

nc
y

Magnitude of Earthquake

When the data
is scarce and
noisy, e.g., in
medicine, and
robotics.

Uncertainty for Image Segmentation

12
(taken from Kendall et al. 2017)

UncertaintyPredictionTruthImage

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.

2

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.

2

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.

2

Variational Inference (VI)

• Approximate the posterior using optimization
– Popular in reinforcement learning, unsupervised

learning, online learning, active learning etc.
• We need accurate VI algorithms that are
– general (apply to many models),
– scalable (for large data and models),
– fast (converge quickly),
– simple (easy to implement).

• This talk: New algorithms with such features.

13

Gradient vs Natural-Gradient
• Gradient Descent (GD)
– Rely on stochastic and automatic gradients.
– Simple, general, and scalable, but can have

suboptimal convergence.
– Practical VI (2011), Black-box VI (2014), Bayes by backprop (2015),

ADVI (2015), and many more.

• Natural-Gradient Descent (NGD)
– Fast convergence, but computationally difficult,

therefore not simple, general, and scalable
– (Sato (2001), Riemannian CG (2010), Stochastic VI (2013), etc.

• Fast and simple NGD for complex models,
such as those containing deep networks.

14

Talk Outline

• Variational Inference with gradient descent
and natural-gradient descent.

• NGD with Conjugate-Computation VI
– Generalization of forward-backward algorithms,

SVI, Message Passing (AIstats 2017).
– Deep Nets (ICML 2018, NeurIPS 2018).

• Generalizations and Extensions,
– Structured VAEs (ICLR 2018), Mixture of

Exponential Family approximations, Evolution
strategy (ArXiv 2017), etc.

15

Variational Inference

Gradient Descent (GD)
Vs

Natural-Gradient Descent (NGD)

16

A Naïve Method

17

Parameters

Data

Neural network

InputOutput

Generate

Prior distribution

Bayesian Inference

18

Bayes’ rule :

Intractable integral
Posterior

distribution

Narrow Wide

Variational Inference

19

Intractable
integral

Natural
parameters

Parameters

Data

Variational Approximation

Maximize the Evidence Lower Bound (ELBO):

Relationship to Other Fields

• Perturbation to avoid local minima.
– Gaussian homotopy and Continuation method.
– Smoothed/graduated optimization.

• Online learning.
– Exponentiated weighted averaging.

• Reinforcement learning.
– Structured distribution.
– q is the policy x environment (Levin 2018).

20

Gradient Descent

21

Maximize the Evidence Lower Bound (ELBO):

Gradient descent (GD) :
21

VI with Natural-Gradient Descent

22

Fisher Information Matrix (FIM)

Natural Gradient

• Fast convergence due to optimization in
Riemannian manifold (not Euclidean space).

• But requires additional computations.
• Can we simplify/reduce this computation?

Sato 2001, Honkela et al. 2010, Hoffman et.al. 2013

NGD:

Can we simplify NGD computation?
Yes, by using algorithms such as

message passing/ backprop.

Conjugate-Computation VI
Khan and Lin, AI-STATS 2017

23

The key idea: Expectation Parameters

24

Natural Gradient wrt
natural parameter

Gradient wrt expectation
parameter

Sufficient statistics
Expectation/moment/
mean parameters

For Gaussians, it’s mean and correlation matrix

A key relationship:

NGD :

Conjugate-Computation VI (CVI)

• In a “conjugate” model, this is equivalent to
simply adding the natural parameters of
the factors of a model.

• This is a type of conjugate computation,
and enables “simple” updates for complex
models.

25

Expectation params

CVI on Bayesian Linear Regression

26

likelihood approxprior

Natural Gradient

(y �X✓)>(y �X✓) + �✓>✓
<latexit sha1_base64="rX8IyNjEbJi9KltELKA+f3dm0QQ=">AAACIXicbVDLSgNBEOz1bXxFPQoyKIIihl0vepKAF48KxgSyMfROJsngzO4y0yuE4IfkIoK/4sWDIt7En3GS9RAfBQNFVTU9XVGqpCXf//AmJqemZ2bn5gsLi0vLK8XVtSubZIaLCk9UYmoRWqFkLCokSYlaagTqSIlqdHM69Ku3wliZxJfUS0VDYyeWbcmRnNQsHu/2DmohdQXh3nVIScrGBLbPwg5qjSwX8kDOm8Vtv+SPwP6S4JtslzcHgwcAOG8W38NWwjMtYuIKra0HfkqNPhqSXIm7QphZkSK/wY6oOxqjFrbRH114x3ac0mLtxLgXExup4xN91Nb2dOSSGqlrf3tD8T+vnlH7uNGXcZqRiHm+qJ0pRgkb1sVa0ghOqucIciPdXxnvokFOrtSCKyH4ffJfcnVYCvxScOHaOIEcc7ABW7ALARxBGc7gHCrA4R6e4AVevUfv2Xvz3vPohPc9sw4/4H1+AXSOpK0=</latexit><latexit sha1_base64="NZi+y9DK5eA4/AsYeLzD4AbBZ9M=">AAACIXicbVDLSgMxFM3Ud31VXQoSLEJFLDNu7EoENy4V7AM6tdxJ0zY0mRmSO0Ip/RBduPFX3LhQxJ34M6adLmrrgcDhnHO5uSeIpTDout9OZmFxaXlldS27vrG5tZ3b2a2YKNGMl1kkI10LwHApQl5GgZLXYs1BBZJXg97VyK8+cG1EFN5hP+YNBZ1QtAUDtFIzVyr0T2s+djnC8b2PUUynBHpC/Q4oBTQV0kDKm7m8W3THoPPEm5D85cHjCE83zdyX34pYoniITIIxdc+NsTEAjYJJPsz6ieExsB50eN3SEBQ3jcH4wiE9skqLtiNtX4h0rE5PDEAZ01eBTSrArpn1RuJ/Xj3BdqkxEGGcIA9ZuqidSIoRHdVFW0JzhrJvCTAt7F8p64IGhrbUrC3Bmz15nlTOip5b9G5tGxckxSrZJ4ekQDxyTi7JNbkhZcLIM3kl7+TDeXHenE/nK41mnMnMHvkD5+cX0cumcg==</latexit><latexit sha1_base64="NZi+y9DK5eA4/AsYeLzD4AbBZ9M=">AAACIXicbVDLSgMxFM3Ud31VXQoSLEJFLDNu7EoENy4V7AM6tdxJ0zY0mRmSO0Ip/RBduPFX3LhQxJ34M6adLmrrgcDhnHO5uSeIpTDout9OZmFxaXlldS27vrG5tZ3b2a2YKNGMl1kkI10LwHApQl5GgZLXYs1BBZJXg97VyK8+cG1EFN5hP+YNBZ1QtAUDtFIzVyr0T2s+djnC8b2PUUynBHpC/Q4oBTQV0kDKm7m8W3THoPPEm5D85cHjCE83zdyX34pYoniITIIxdc+NsTEAjYJJPsz6ieExsB50eN3SEBQ3jcH4wiE9skqLtiNtX4h0rE5PDEAZ01eBTSrArpn1RuJ/Xj3BdqkxEGGcIA9ZuqidSIoRHdVFW0JzhrJvCTAt7F8p64IGhrbUrC3Bmz15nlTOip5b9G5tGxckxSrZJ4ekQDxyTi7JNbkhZcLIM3kl7+TDeXHenE/nK41mnMnMHvkD5+cX0cumcg==</latexit><latexit sha1_base64="8pEf7sZY+C83gDA6D/6vh96XwME=">AAACIXicbVDLSgMxFM34rPVVdekmWISKWGbc2JUU3LisYB/QqeVOmrahycyQ3BFK6a+48VfcuFCkO/FnTDtd1NYDgcM553JzTxBLYdB1v5219Y3Nre3MTnZ3b//gMHd0XDNRohmvskhGuhGA4VKEvIoCJW/EmoMKJK8Hg7upX3/m2ogofMRhzFsKeqHoCgZopXauVBheNXzsc4SLJx+jmC4I9JL6PVAKaCqkgZS3c3m36M5AV4k3J3kyR6Wdm/idiCWKh8gkGNP03BhbI9AomOTjrJ8YHgMbQI83LQ1BcdMazS4c03OrdGg30vaFSGfq4sQIlDFDFdikAuybZW8q/uc1E+yWWiMRxgnykKWLuomkGNFpXbQjNGcoh5YA08L+lbI+aGBoS83aErzlk1dJ7brouUXvwc2Xb+d1ZMgpOSMF4pEbUib3pEKqhJEX8kY+yKfz6rw7X84kja4585kT8gfOzy+AvKJ9</latexit>

NGD == Newton’s Method

27

Least-square solution

Gradient descent is suboptimal:

This property generalizes to all “conjugate” models,
where forward-backward algorithm returns the
natural-gradients of ELBO.

For rho=1, converges in 1 step (Newton’s method).

Conditionally-Conjugate Models

28

Data

Global

Local

Images taken from Hoffman et al. (2013) and https://www.zybuluo.com/nanmeng/note/369145

VMP: Sequential
update with rho =1

SVI: Update local variable
with rho=1 and global
variable with rho in (0,1)

For CVI, rho can
follow any schedule,
and updates can be
sequential or parallel.

Convergence Rates for CVI

29

Lipschitz constant of
(nonconvex) ELBO

Strong convexity of the
Fisher Information Matrix

Gradient noise
variance

Mini-batch
size

E
h
k(�k � �k+1)/⇢k2

i



2LC0

↵2
⇤t

+
c�2

M↵⇤

�

<latexit sha1_base64="m+6etNltU37OZbS8Uvh48gtTv8w=">AAACdXicbVFda9RAFJ3Er7p+rR8Pgghjq1ItbpN90cdiERUUKrhtYScNN7OTZNjJBzM3whLzD/x1vvnmb/DFV292t6CtFy4czjl37syZpDbaYRD88PwLFy9dvrJxdXDt+o2bt4a37xy6qrFSTWRlKnucgFNGl2qCGo06rq2CIjHqKJnv9/rRF2WdrsrPuKhVVEBW6lRLQKLi4TdRAOZJ0r7puHitsykXX/m2MHTCDOI5f8FPcTvfCTv+bFfYvCLTyXjpj0hXfadIo6kF2Y4/7MdB1wowdQ7xczJix3fWohROZwWcjLv246mDNlud5RjFw61gFCyLnwfhGmztvf15j1EdxMPvYlbJplAlSgPOTcOgxqgFi1oa1Q1E41QNcg6ZmhIsoVAuapepdfwJMTOeVpa6RL5k/55ooXBuUSTk7DNyZ7We/J82bTB9FbW6rBtUpVwtShvDseL9F/CZtkqiWRAAaTXdlcscKB2kjxpQCOHZJ58Hh+NRGIzCT5TGe7aqDfaAbbJtFrKXbI+9YwdswiT75d33Hnmb3m//of/Yf7qy+t565i77p/zdP+O+vU8=</latexit><latexit sha1_base64="0NZoxzhtFLLmBxVsA/3NkkZCHy4=">AAACdXicbVFdaxQxFM2MWtvV2tW+CCLEVqUfuJ3ZF30sFlFBoYLbFjbT4U42MxM280FyR1ji/IP+Ot988zf44pNgZncL2nrhwuGcc3OTk6RW0mAQfPf8GzdvrdxeXevdubt+b6N//8GJqRrNxYhXqtJnCRihZClGKFGJs1oLKBIlTpPpUaeffhHayKr8jLNaRAVkpUwlB3RU3L9gBWCeJPZNS9lrmY0p+0p3mHInTCCe0hf0EtvpftjS3QOm88qZzodzf+R00XWKbjTVwO3ww1EctJaBqnOI95wRW7q/FDkzMivgfNjaj5cOt1nLLMco7m8Hg2Be9DoIl2D78O2Pzd/rK7PjuP+NTSreFKJErsCYcRjUGFnQKLkSbY81RtTAp5CJsYMlFMJEdp5aS585ZkLTSrsukc7ZvycsFMbMisQ5u4zMVa0j/6eNG0xfRVaWdYOi5ItFaaMoVrT7AjqRWnBUMweAa+nuSnkOLh10H9VzIYRXn3wdnAwHYTAIP7k03pNFrZJHZIvskJC8JIfkHTkmI8LJT++h98Tb8n75j/2n/vOF1feWM5vkn/IP/gDxF77X</latexit><latexit sha1_base64="0NZoxzhtFLLmBxVsA/3NkkZCHy4=">AAACdXicbVFdaxQxFM2MWtvV2tW+CCLEVqUfuJ3ZF30sFlFBoYLbFjbT4U42MxM280FyR1ji/IP+Ot988zf44pNgZncL2nrhwuGcc3OTk6RW0mAQfPf8GzdvrdxeXevdubt+b6N//8GJqRrNxYhXqtJnCRihZClGKFGJs1oLKBIlTpPpUaeffhHayKr8jLNaRAVkpUwlB3RU3L9gBWCeJPZNS9lrmY0p+0p3mHInTCCe0hf0EtvpftjS3QOm88qZzodzf+R00XWKbjTVwO3ww1EctJaBqnOI95wRW7q/FDkzMivgfNjaj5cOt1nLLMco7m8Hg2Be9DoIl2D78O2Pzd/rK7PjuP+NTSreFKJErsCYcRjUGFnQKLkSbY81RtTAp5CJsYMlFMJEdp5aS585ZkLTSrsukc7ZvycsFMbMisQ5u4zMVa0j/6eNG0xfRVaWdYOi5ItFaaMoVrT7AjqRWnBUMweAa+nuSnkOLh10H9VzIYRXn3wdnAwHYTAIP7k03pNFrZJHZIvskJC8JIfkHTkmI8LJT++h98Tb8n75j/2n/vOF1feWM5vkn/IP/gDxF77X</latexit><latexit sha1_base64="lKYi1kvkTuESS2rpnHRo0d8Sr40=">AAACdXicbVFdaxQxFM2MX3X92rYvggixq9Ja3M7sS30sLYKCQgW3LWymw51sZiZs5oPkjrDE+Qf+Ot/6N3zx1cx2Ctp64cLhnHNzk5OkVtJgEFx4/q3bd+7eW7s/ePDw0eMnw/WNE1M1mospr1SlzxIwQslSTFGiEme1FlAkSpwmi6NOP/0mtJFV+RWXtYgKyEqZSg7oqHj4gxWAeZLY9y1lhzKbUfadbjPlTphDvKBv6RW2i92wpTt7TOeVM51PVv7I6aLrFN1oqoHbyaejOGgtA1XnEL9xRmzpbi9yZmRWwPmktZ+vHG6zllmOUTwcBeNgVfQmCHswIn0dx8OfbF7xphAlcgXGzMKgxsiCRsmVaAesMaIGvoBMzBwsoRAmsqvUWvrKMXOaVtp1iXTF/j1hoTBmWSTO2WVkrmsd+T9t1mD6LrKyrBsUJb9clDaKYkW7L6BzqQVHtXQAuJburpTn4NJB91EDF0J4/ck3wclkHAbj8EswOvjYx7FGnpEtsk1Csk8OyAdyTKaEk1/eU++Ft+X99p/7L/3Xl1bf62c2yT/l7/0B4q+71A==</latexit>

See Khan et al. UAI 2016. The proof is based on
Ghadimi, Lan, and Zhang (2014)

NGD for Deep Learning

30

Using CVI on Bayesian deep learning
with Gaussian approximation.
Reduces to a Newton step.

CVI for Bayesian Neural Network

31

likelihood approxprior

neural network

Back-propagated
gradient & Hessian

CVI for Bayesian Neural Network

32

Back-propagated
gradient & Hessian

Variational Adam for Mean-Field

33

1. Select a minibatch
2. Compute gradient using backpropagation
3. Compute a scale vector to adapt the learning rate
4. Take a gradient step

Adaptive learning-rate method (e.g., Adam)Variational Adam (Vadam) for gamma =1

Variance

Mean

Approximate the Hessian by square of gradients.
ICML 2018

Illustration: Classification

34

Logistic regression
(30 data points, 2

dimensional input).
Sampled from

Gaussian mixture
with 2 components

Adam vs Vadam (on Logistic-Reg)

35

M = 5,
Rho = 0.01,
Gamma = 0.01

Adam
Vadam
(mean)
Vadam
(samples)

Adam vs Vadam (on Neural Nets)

36

Adam
Vadam
(mean)
Vadam
(samples)

(By Runa E.)

LeNet-5 on CIFAR10

37

2 Empirical Evaluation

(a) MNIST (b) CIFAR10

Test
VOGN Adam

Log Loss 0.065 0.108
Error 2.109 1.079

Train
VOGN Adam

Log Loss 0.058 0.001
Error 1.718 0.026

Test
VOGN Adam

Log Loss 1.130 8.341
Error 37.01 40.47

Train
VOGN Adam

Log Loss 0.815 0.077
Error 27.18 2.248

Figure 2: Evaluation metrics on Train and Test sets for both optimizers. Adam overfits while VOGN
does a good job of keeping test and train errors close. VOGN outperforms Adam on CIFAR10 but
underperforms on MNIST for test accuracy. For test log loss, VOGN is better than Adam in both
cases. Model architectures given in Table 1.

3

2 Empirical Evaluation

(a) MNIST (b) CIFAR10

Test
VOGN Adam

Log Loss 0.065 0.108
Error 2.109 1.079

Train
VOGN Adam

Log Loss 0.058 0.001
Error 1.718 0.026

Test
VOGN Adam

Log Loss 1.130 8.341
Error 37.01 40.47

Train
VOGN Adam

Log Loss 0.815 0.077
Error 27.18 2.248

Figure 2: Evaluation metrics on Train and Test sets for both optimizers. Adam overfits while VOGN
does a good job of keeping test and train errors close. VOGN outperforms Adam on CIFAR10 but
underperforms on MNIST for test accuracy. For test log loss, VOGN is better than Adam in both
cases. Model architectures given in Table 1.

3

2 Empirical Evaluation

(a) MNIST (b) CIFAR10

Test
VOGN Adam

Log Loss 0.065 0.108
Error 2.109 1.079

Train
VOGN Adam

Log Loss 0.058 0.001
Error 1.718 0.026

Test
VOGN Adam

Log Loss 1.130 8.341
Error 37.01 40.47

Train
VOGN Adam

Log Loss 0.815 0.077
Error 27.18 2.248

Figure 2: Evaluation metrics on Train and Test sets for both optimizers. Adam overfits while VOGN
does a good job of keeping test and train errors close. VOGN outperforms Adam on CIFAR10 but
underperforms on MNIST for test accuracy. For test log loss, VOGN is better than Adam in both
cases. Model architectures given in Table 1.

3

(By Anirudh Jain)

Faster, Simpler, and More Robust
Regression on Australian-Scale dataset using deep
neural nets for various number of minibatch size.

38

Existing Method
(BBVI)Our method (Vadam)
Our method (VOGN)

Faster, Simpler, and More Robust

39

Results on MNIST digit classification (for various
values of Gaussian prior precision parameter)

Existing Method
(BBVI)Our method (Vadam)

Parameter-Space Noise for Deep RL

40

On OpenAI Gym Cheetah with DDPG
with DNN with [400,300] ReLU

Vadam(noise using
 natural-gradients)

SGD (noise using
standard gradients)

Reward 2038

Reward 5264

Ruckstriesh et.al.2010, Fortunato et.al. 2017, Plapper et.al. 2017

SGD (no noise)

41

Avoiding
Local

Minima
An example
taken from
Casella and

Robert’s book.

Vadam
reaches the
flat minima,
but GD gets

stuck at a local
minima.

Optimization by smoothing, Gaussian homotopy/blurring etc., Entropy SGLD
etc.

+ = ⇡

(1� �)UtU>
t �G(✓t)

fast_eig

Ut+1U>
t+1

L⇥D M ⇥D L⇥DD ⇥ L D ⇥M D ⇥ L

Figure 2: This figure illustrates Equations (6) and (7) which are used to derive SLANG.

The new covariance approximation can now be used to update µt+1 according to (2) as shown below:

SLANG: µt+1 = µt � ↵t

h
Ut+1U

>
t+1 +Dt+1

i�1
[ĝ(✓t) + �µt] , (11)

The above update uses a stochastic, low-rank covariance estimate to approximate natural-gradient
updates, which is why we use the name SLANG.

When L = D, Ut+1U
>
t+1 is full rank and SLANG is identical to the approximate natural-gradient

update (2). When L < D, SLANG produces matrices ⌃̂�1
t with diagonals matching (2) at every

iteration. The diagonal correction ensures that no diagonal information is lost during the low-rank
approximation of the covariance. A formal statement and proof is given in Appendix D.

We also tried an alternative method where Ut+1 is learned using an exponential moving-average of
the eigendecompositions of Ĝ(✓). This previous iteration of SLANG is discussed in Appendix B,
where we show that it gives worse results than the SLANG update.

Next, we give implementation details of SLANG.

3.1 Details of the SLANG Implementation

The pseudo-code for SLANG is shown in Algorithm 1 in Figure 3.

At every iteration, we generate a sample ✓t ⇠ N (✓|µt,UtU
>
t + Dt). This is implemented

in line 4 using the function fast_sample (see Algorithm 3 for a pseudo-code). This function
uses the Woodbury identity and the symmetric factorization algorithm of [4] to compute At =�
UtU

>
t + Dt

��1/2. The sample is then computed as ✓t = µt + At✏, where ✏ ⇠ N (0, I). The
function fast_sample requires computations in O(DL

2 +DLS) to generate S samples, which is
linear in D. More details are given in Appendix C.4.

Given a sample, we need to compute and store all the individual stochastic gradients gi(✓t) for all
examples i in a minibatch M. The standard back-propagation implementation does not allow this.
We instead use a version of the backpropagation algorithm outlined in a note by Goodfellow [11],
which enables efficient computation of the gradients ĝi(✓t). This is shown in line 6. More details on
the function backprop_goodfellow is given in Appendix C.1.

In line 7, we compute the eigenvalue value decomposition of (1� �t)UtUt + �tĜ(✓t) by using the
fast_eig function. The function fast_eig implements a randomized eigenvalue decomposition
method discussed in [13]. It computes the top-L eigenvalue decomposition of a low-rank matrix in
O(DLMS +DL

2). More details of the function is given in Appendix C.2. The matrix Ut+1 and
Dt+1 are updated using the eigenvalue decomposition in lines 8, 9 and 10.

In lines 11 and 12, we compute the update vector [Ut+1U
>
t+1 + Dt+1]�1 [ĝ(✓t) + �µt], which

requires solving a linear system. We use the function fast_inverse shown in Algorithm 2. This
function uses the Woodbury identity to efficiently compute the inverse with a cost O(DL

2). More
details are given in Appendix C.3. Finally, in line 13, we update µt+1.

The overall computational complexity of SLANG is O(DL
2 + DLMS) and its memory cost is

O(DL+DMS). Both are linear in D and M . The cost is quadratic in L, but since L ⌧ D (e.g., 5
or 10), this only adds a small multiplicative constant in the runtime. SLANG reduces the cost of the
update (2) significantly while preserving some posterior correlations.

5

Stochastic, Low-Rank, Approximate,
Natural-Gradient (SLANG)

42

gradient

gr
ad

ie
nt

• Low-rank + diagonal covariance matrix.
• SLANG is linear in D!

Low-Rank + diagonal

NeurIPS 2018

SLANG is Faster than GD

43

Classification on USPS with BNNs

Figure 4: This figure compares the convergence behavior on two datasets: USPS 3vs5 (top) and
Breast Cancer (bottom); and two models: Bayesian logistic regression (left) and Bayesian neural
networks (BNN) (right). The three methods SLANG(1, 2, 3) refer to SLANG with L = 1, 5, 10 for
logistic regression. For BNN, they refer to SLANG with L = 8, 16, 32. The mean-field method
is a natural-gradient mean-field method for logistic regression (see text) and BBB [7] for BNN.
This comparison clearly shows that SLANG converges faster than the mean-field method, and,
for Bayesian logistic regression, matches the convergence of the full-Gaussian method when L is
increased.

Table 2: Comparison on UCI datasets using Bayesian neural networks. We repeat the setup used
in Gal and Ghahramani [10]. SLANG uses L = 1, and outperforms BBB but gives comparable
performance to Dropout.

Test RMSE Test log-likelihood
Dataset BBB Dropout SLANG BBB Dropout SLANG
Boston 3.43 ± 0.20 2.97 ± 0.19 3.21 ± 0.19 -2.66 ± 0.06 -2.46 ± 0.06 -2.58 ± 0.05
Concrete 6.16 ± 0.13 5.23 ± 0.12 5.58 ± 0.19 -3.25 ± 0.02 -3.04 ± 0.02 -3.13 ± 0.03
Energy 0.97 ± 0.09 1.66 ± 0.04 0.64 ± 0.03 -1.45 ± 0.10 -1.99 ± 0.02 -1.12 ± 0.01
Kin8nm 0.08 ± 0.00 0.10 ± 0.00 0.08 ± 0.00 1.07 ± 0.00 0.95 ± 0.01 1.06 ± 0.00
Naval 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 4.61 ± 0.01 3.80 ± 0.01 4.76 ± 0.00
Power 4.21 ± 0.03 4.02 ± 0.04 4.16 ± 0.04 -2.86 ± 0.01 -2.80 ± 0.01 -2.84 ± 0.01
Wine 0.64 ± 0.01 0.62 ± 0.01 0.65 ± 0.01 -0.97 ± 0.01 -0.93 ± 0.01 -0.97 ± 0.01
Yacht 1.13 ± 0.06 1.11 ± 0.09 1.08 ± 0.06 -1.56 ± 0.02 -1.55 ± 0.03 -1.88 ± 0.01

work, we use neural networks with one hidden layer with 50 hidden units and ReLU activation
functions. We compare SLANG with L = 1 to the Bayes By Backprop (BBB) method [7] and the
Bayesian Dropout method of [10]. For the 5 smallest datasets, we used a mini-batch size of 10 and 4
Monte-Carlo samples during training. For the 3 larger datasets, we used a mini-batch size of 100
and 2 Monte-Carlo samples during training. More details are given in Appendix F.3. We report test
RMSE and test log-likelihood in Table 2. SLANG with just one rank outperforms BBB on 7 out
of 8 datasets for RMSE and on 5 out of 8 datasets for log-likelihood. Moreover, SLANG shows
comparable performance to Dropout.

Finally, we report results for classification on MNIST. We train a BNN with two hidden layers of
400 hidden units each. The training set consists of 50,000 examples and the remaining 10,000 are
used as a validation set. The test set is a separate set which consists of 10,000 examples. We use
SLANG with L = 1, 2, 4, 8, 16, 32. For each value of L, we choose the prior precision and learning
rate based on performance on the validation set. Further details can be found in Appendix F.4. The

8

Figure 4: This figure compares the convergence behavior on two datasets: USPS 3vs5 (top) and
Breast Cancer (bottom); and two models: Bayesian logistic regression (left) and Bayesian neural
networks (BNN) (right). The three methods SLANG(1, 2, 3) refer to SLANG with L = 1, 5, 10 for
logistic regression. For BNN, they refer to SLANG with L = 8, 16, 32. The mean-field method
is a natural-gradient mean-field method for logistic regression (see text) and BBB [7] for BNN.
This comparison clearly shows that SLANG converges faster than the mean-field method, and,
for Bayesian logistic regression, matches the convergence of the full-Gaussian method when L is
increased.

Table 2: Comparison on UCI datasets using Bayesian neural networks. We repeat the setup used
in Gal and Ghahramani [10]. SLANG uses L = 1, and outperforms BBB but gives comparable
performance to Dropout.

Test RMSE Test log-likelihood
Dataset BBB Dropout SLANG BBB Dropout SLANG
Boston 3.43 ± 0.20 2.97 ± 0.19 3.21 ± 0.19 -2.66 ± 0.06 -2.46 ± 0.06 -2.58 ± 0.05
Concrete 6.16 ± 0.13 5.23 ± 0.12 5.58 ± 0.19 -3.25 ± 0.02 -3.04 ± 0.02 -3.13 ± 0.03
Energy 0.97 ± 0.09 1.66 ± 0.04 0.64 ± 0.03 -1.45 ± 0.10 -1.99 ± 0.02 -1.12 ± 0.01
Kin8nm 0.08 ± 0.00 0.10 ± 0.00 0.08 ± 0.00 1.07 ± 0.00 0.95 ± 0.01 1.06 ± 0.00
Naval 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 4.61 ± 0.01 3.80 ± 0.01 4.76 ± 0.00
Power 4.21 ± 0.03 4.02 ± 0.04 4.16 ± 0.04 -2.86 ± 0.01 -2.80 ± 0.01 -2.84 ± 0.01
Wine 0.64 ± 0.01 0.62 ± 0.01 0.65 ± 0.01 -0.97 ± 0.01 -0.93 ± 0.01 -0.97 ± 0.01
Yacht 1.13 ± 0.06 1.11 ± 0.09 1.08 ± 0.06 -1.56 ± 0.02 -1.55 ± 0.03 -1.88 ± 0.01

work, we use neural networks with one hidden layer with 50 hidden units and ReLU activation
functions. We compare SLANG with L = 1 to the Bayes By Backprop (BBB) method [7] and the
Bayesian Dropout method of [10]. For the 5 smallest datasets, we used a mini-batch size of 10 and 4
Monte-Carlo samples during training. For the 3 larger datasets, we used a mini-batch size of 100
and 2 Monte-Carlo samples during training. More details are given in Appendix F.3. We report test
RMSE and test log-likelihood in Table 2. SLANG with just one rank outperforms BBB on 7 out
of 8 datasets for RMSE and on 5 out of 8 datasets for log-likelihood. Moreover, SLANG shows
comparable performance to Dropout.

Finally, we report results for classification on MNIST. We train a BNN with two hidden layers of
400 hidden units each. The training set consists of 50,000 examples and the remaining 10,000 are
used as a validation set. The test set is a separate set which consists of 10,000 examples. We use
SLANG with L = 1, 2, 4, 8, 16, 32. For each value of L, we choose the prior precision and learning
rate based on performance on the validation set. Further details can be found in Appendix F.4. The

8

Generalization and
Extensions

44

Deep Nets + Graphical Models

45

Neural Nets +
Linear Dynamical System

Neural Nets + GMM

Published as a conference paper at ICLR 2018

Latent mixture model Latent state-space model

yn

xn

zn

✓NN

✓PGM

N

(a) Generative Model

yn

xn

zn✓PGM

�NN

�PGM

N

(b) SIN

y1 y2 y3 y4

x1 x2 x3 x4

✓PGM

✓NN

(c) Generative Model

y1 y2 y3 y4

x1 x2 x3 x4

✓PGM �PGM

�NN

(d) SIN

Figure 1: Fig. (a) and (c) show two examples of generative models that combine deep models with
PGMs, while Fig. (b) and (d) show our proposed Structured Inference Networks (SIN) for the two
models. The generative models are just like the decoder in VAE but they employ a structured prior,
e.g., Fig. (a) has a mixture-model prior while Fig. (b) has a dynamical system prior. SINs, just like
the encoder in VAE, mimic the structure of the generative model by using parameters �. One main
difference is that in SIN the arrows between yn and xn are reversed compared to the model, while
rest of the arrows have the same direction.

derive a variational message-passing algorithm whose messages automatically reduce to stochastic-
gradients for the deep components of the model, while perform natural-gradient updates for the PGM
part. Overall, our algorithm enables Structured, Amortized, and Natural-gradient (SAN) updates and
therefore we call our algorithm the SAN algorithm. We show that our algorithm give comparable
performance to the method of Johnson et al. (2016) while simplifying and generalizing it. The code
to reproduce our results is available at https://github.com/emtiyaz/vmp-for-svae/.

2 THE MODEL AND CHALLENGES WITH ITS INFERENCE

We consider the modelling of data vectors yn by using local latent vectors xn. Following previous
works (Johnson et al., 2016; Archer et al., 2015; Krishnan et al., 2015), we model the output yn
given xn using a neural network with parameters ✓NN, and capture the correlations among data
vectors y := {y1,y2, . . . ,yN} using a probabilistic graphical model (PGM) over the latent vectors
x := {x1,x2, . . . ,xN}. Specifically, we use the following joint distribution:

p(y,x,✓) :=

"
NY

n=1

p(yn|xn,✓NN)

#

| {z }
DNN

"
p(x|✓PGM)

#

| {z }
PGM

"
p(✓PGM)

#

| {z }
Hyperprior

, (1)

where ✓NN and ✓PGM are parameters of a DNN and PGM respectively, and ✓ := {✓NN,✓PGM}.

This combination of probabilistic graphical model and neural network is referred to as structured
variational auto-encoder (SVAE) by Johnson et al. (2016). SVAE employs a structured prior
p(x|✓PGM) to extract useful structure from the data. SVAE therefore differs from VAE (Kingma
& Welling, 2013) where the prior distribution over x is simply a multivariate Gaussian distribution
p(x) = N (x|0, I) with no special structure. To illustrate this difference, we now give an example.

Example (Mixture-Model Prior) : Suppose we wish to group the outputs yn into K distinct
clusters. For such a task, the standard Gaussian prior used in VAE is not a useful prior. We could
instead use a mixture-model prior over xn, as suggested by (Johnson et al., 2016),

p(x|✓PGM) =
NY

n=1

p(xn|✓PGM) =
NY

n=1

"
KX

k=1

p(xn|zn = k)⇡k

#
, (2)

where zn 2 {1, 2, . . . ,K} is the mixture indicator for the n’th data example, and ⇡k are mixing
proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
a Gaussian distribution p(xn|zn = k) := N (xn|µk,⌃k) giving us the Gaussian Mixture Model
(GMM) prior with PGM hyperparameters ✓PGM := {µk,⌃k,⇡k}Kk=1. The graphical model of
an SVAE with such priors is shown in Figure 1a. This type of structured-prior is useful for
discovering clusters in the data, making them easier to interpret than VAE.

2

Published as a conference paper at ICLR 2018

Latent mixture model Latent state-space model

yn

xn

zn

✓NN

✓PGM

N

(a) Generative Model

yn

xn

zn✓PGM

�NN

�PGM

N

(b) SIN

y1 y2 y3 y4

x1 x2 x3 x4

✓PGM

✓NN

(c) Generative Model

y1 y2 y3 y4

x1 x2 x3 x4

✓PGM �PGM

�NN

(d) SIN

Figure 1: Fig. (a) and (c) show two examples of generative models that combine deep models with
PGMs, while Fig. (b) and (d) show our proposed Structured Inference Networks (SIN) for the two
models. The generative models are just like the decoder in VAE but they employ a structured prior,
e.g., Fig. (a) has a mixture-model prior while Fig. (b) has a dynamical system prior. SINs, just like
the encoder in VAE, mimic the structure of the generative model by using parameters �. One main
difference is that in SIN the arrows between yn and xn are reversed compared to the model, while
rest of the arrows have the same direction.

derive a variational message-passing algorithm whose messages automatically reduce to stochastic-
gradients for the deep components of the model, while perform natural-gradient updates for the PGM
part. Overall, our algorithm enables Structured, Amortized, and Natural-gradient (SAN) updates and
therefore we call our algorithm the SAN algorithm. We show that our algorithm give comparable
performance to the method of Johnson et al. (2016) while simplifying and generalizing it. The code
to reproduce our results is available at https://github.com/emtiyaz/vmp-for-svae/.

2 THE MODEL AND CHALLENGES WITH ITS INFERENCE

We consider the modelling of data vectors yn by using local latent vectors xn. Following previous
works (Johnson et al., 2016; Archer et al., 2015; Krishnan et al., 2015), we model the output yn
given xn using a neural network with parameters ✓NN, and capture the correlations among data
vectors y := {y1,y2, . . . ,yN} using a probabilistic graphical model (PGM) over the latent vectors
x := {x1,x2, . . . ,xN}. Specifically, we use the following joint distribution:

p(y,x,✓) :=

"
NY

n=1

p(yn|xn,✓NN)

#

| {z }
DNN

"
p(x|✓PGM)

#

| {z }
PGM

"
p(✓PGM)

#

| {z }
Hyperprior

, (1)

where ✓NN and ✓PGM are parameters of a DNN and PGM respectively, and ✓ := {✓NN,✓PGM}.

This combination of probabilistic graphical model and neural network is referred to as structured
variational auto-encoder (SVAE) by Johnson et al. (2016). SVAE employs a structured prior
p(x|✓PGM) to extract useful structure from the data. SVAE therefore differs from VAE (Kingma
& Welling, 2013) where the prior distribution over x is simply a multivariate Gaussian distribution
p(x) = N (x|0, I) with no special structure. To illustrate this difference, we now give an example.

Example (Mixture-Model Prior) : Suppose we wish to group the outputs yn into K distinct
clusters. For such a task, the standard Gaussian prior used in VAE is not a useful prior. We could
instead use a mixture-model prior over xn, as suggested by (Johnson et al., 2016),

p(x|✓PGM) =
NY

n=1

p(xn|✓PGM) =
NY

n=1

"
KX

k=1

p(xn|zn = k)⇡k

#
, (2)

where zn 2 {1, 2, . . . ,K} is the mixture indicator for the n’th data example, and ⇡k are mixing
proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
a Gaussian distribution p(xn|zn = k) := N (xn|µk,⌃k) giving us the Gaussian Mixture Model
(GMM) prior with PGM hyperparameters ✓PGM := {µk,⌃k,⇡k}Kk=1. The graphical model of
an SVAE with such priors is shown in Figure 1a. This type of structured-prior is useful for
discovering clusters in the data, making them easier to interpret than VAE.

2

Published as a conference paper at ICLR 2018

Latent mixture model Latent state-space model

yn

xn

zn

✓NN

✓PGM

N

(a) Generative Model

yn

xn

zn✓PGM

�NN

�PGM

N

(b) SIN

y1 y2 y3 y4

x1 x2 x3 x4

✓PGM

✓NN

(c) Generative Model

y1 y2 y3 y4

x1 x2 x3 x4

✓PGM �PGM

�NN

(d) SIN

Figure 1: Fig. (a) and (c) show two examples of generative models that combine deep models with
PGMs, while Fig. (b) and (d) show our proposed Structured Inference Networks (SIN) for the two
models. The generative models are just like the decoder in VAE but they employ a structured prior,
e.g., Fig. (a) has a mixture-model prior while Fig. (b) has a dynamical system prior. SINs, just like
the encoder in VAE, mimic the structure of the generative model by using parameters �. One main
difference is that in SIN the arrows between yn and xn are reversed compared to the model, while
rest of the arrows have the same direction.

derive a variational message-passing algorithm whose messages automatically reduce to stochastic-
gradients for the deep components of the model, while perform natural-gradient updates for the PGM
part. Overall, our algorithm enables Structured, Amortized, and Natural-gradient (SAN) updates and
therefore we call our algorithm the SAN algorithm. We show that our algorithm give comparable
performance to the method of Johnson et al. (2016) while simplifying and generalizing it. The code
to reproduce our results is available at https://github.com/emtiyaz/vmp-for-svae/.

2 THE MODEL AND CHALLENGES WITH ITS INFERENCE

We consider the modelling of data vectors yn by using local latent vectors xn. Following previous
works (Johnson et al., 2016; Archer et al., 2015; Krishnan et al., 2015), we model the output yn
given xn using a neural network with parameters ✓NN, and capture the correlations among data
vectors y := {y1,y2, . . . ,yN} using a probabilistic graphical model (PGM) over the latent vectors
x := {x1,x2, . . . ,xN}. Specifically, we use the following joint distribution:

p(y,x,✓) :=

"
NY

n=1

p(yn|xn,✓NN)

#

| {z }
DNN

"
p(x|✓PGM)

#

| {z }
PGM

"
p(✓PGM)

#

| {z }
Hyperprior

, (1)

where ✓NN and ✓PGM are parameters of a DNN and PGM respectively, and ✓ := {✓NN,✓PGM}.

This combination of probabilistic graphical model and neural network is referred to as structured
variational auto-encoder (SVAE) by Johnson et al. (2016). SVAE employs a structured prior
p(x|✓PGM) to extract useful structure from the data. SVAE therefore differs from VAE (Kingma
& Welling, 2013) where the prior distribution over x is simply a multivariate Gaussian distribution
p(x) = N (x|0, I) with no special structure. To illustrate this difference, we now give an example.

Example (Mixture-Model Prior) : Suppose we wish to group the outputs yn into K distinct
clusters. For such a task, the standard Gaussian prior used in VAE is not a useful prior. We could
instead use a mixture-model prior over xn, as suggested by (Johnson et al., 2016),

p(x|✓PGM) =
NY

n=1

p(xn|✓PGM) =
NY

n=1

"
KX

k=1

p(xn|zn = k)⇡k

#
, (2)

where zn 2 {1, 2, . . . ,K} is the mixture indicator for the n’th data example, and ⇡k are mixing
proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
a Gaussian distribution p(xn|zn = k) := N (xn|µk,⌃k) giving us the Gaussian Mixture Model
(GMM) prior with PGM hyperparameters ✓PGM := {µk,⌃k,⇡k}Kk=1. The graphical model of
an SVAE with such priors is shown in Figure 1a. This type of structured-prior is useful for
discovering clusters in the data, making them easier to interpret than VAE.

2

Published as a conference paper at ICLR 2018

Latent mixture model Latent state-space model

yn

xn

zn

✓NN

✓PGM

N

(a) Generative Model

yn

xn

zn✓PGM

�NN

�PGM

N

(b) SIN

y1 y2 y3 y4

x1 x2 x3 x4

✓PGM

✓NN

(c) Generative Model

y1 y2 y3 y4

x1 x2 x3 x4

✓PGM �PGM

�NN

(d) SIN

Figure 1: Fig. (a) and (c) show two examples of generative models that combine deep models with
PGMs, while Fig. (b) and (d) show our proposed Structured Inference Networks (SIN) for the two
models. The generative models are just like the decoder in VAE but they employ a structured prior,
e.g., Fig. (a) has a mixture-model prior while Fig. (b) has a dynamical system prior. SINs, just like
the encoder in VAE, mimic the structure of the generative model by using parameters �. One main
difference is that in SIN the arrows between yn and xn are reversed compared to the model, while
rest of the arrows have the same direction.

derive a variational message-passing algorithm whose messages automatically reduce to stochastic-
gradients for the deep components of the model, while perform natural-gradient updates for the PGM
part. Overall, our algorithm enables Structured, Amortized, and Natural-gradient (SAN) updates and
therefore we call our algorithm the SAN algorithm. We show that our algorithm give comparable
performance to the method of Johnson et al. (2016) while simplifying and generalizing it. The code
to reproduce our results is available at https://github.com/emtiyaz/vmp-for-svae/.

2 THE MODEL AND CHALLENGES WITH ITS INFERENCE

We consider the modelling of data vectors yn by using local latent vectors xn. Following previous
works (Johnson et al., 2016; Archer et al., 2015; Krishnan et al., 2015), we model the output yn
given xn using a neural network with parameters ✓NN, and capture the correlations among data
vectors y := {y1,y2, . . . ,yN} using a probabilistic graphical model (PGM) over the latent vectors
x := {x1,x2, . . . ,xN}. Specifically, we use the following joint distribution:

p(y,x,✓) :=

"
NY

n=1

p(yn|xn,✓NN)

#

| {z }
DNN

"
p(x|✓PGM)

#

| {z }
PGM

"
p(✓PGM)

#

| {z }
Hyperprior

, (1)

where ✓NN and ✓PGM are parameters of a DNN and PGM respectively, and ✓ := {✓NN,✓PGM}.

This combination of probabilistic graphical model and neural network is referred to as structured
variational auto-encoder (SVAE) by Johnson et al. (2016). SVAE employs a structured prior
p(x|✓PGM) to extract useful structure from the data. SVAE therefore differs from VAE (Kingma
& Welling, 2013) where the prior distribution over x is simply a multivariate Gaussian distribution
p(x) = N (x|0, I) with no special structure. To illustrate this difference, we now give an example.

Example (Mixture-Model Prior) : Suppose we wish to group the outputs yn into K distinct
clusters. For such a task, the standard Gaussian prior used in VAE is not a useful prior. We could
instead use a mixture-model prior over xn, as suggested by (Johnson et al., 2016),

p(x|✓PGM) =
NY

n=1

p(xn|✓PGM) =
NY

n=1

"
KX

k=1

p(xn|zn = k)⇡k

#
, (2)

where zn 2 {1, 2, . . . ,K} is the mixture indicator for the n’th data example, and ⇡k are mixing
proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
a Gaussian distribution p(xn|zn = k) := N (xn|µk,⌃k) giving us the Gaussian Mixture Model
(GMM) prior with PGM hyperparameters ✓PGM := {µk,⌃k,⇡k}Kk=1. The graphical model of
an SVAE with such priors is shown in Figure 1a. This type of structured-prior is useful for
discovering clusters in the data, making them easier to interpret than VAE.

2

Amortized Inference on VAE +
Probabilistic Graphical Models (PGM)

46

Graphical model +
Deep Model

Structured Inference
Network

En
co

de
r

D
ec

od
er

Backprop on DNN, and forward-backward on PGM.

ICLR 2018

Going Beyond Exponential Family

• Fast and Simple NGD for approximations
outside exponential family,
– Scale mixture of Gaussians, e.g., T-distribution,
– Finite mixture of Gaussian,
– Matrix Variate Gaussian,
– Skew-Gaussians.

• The updates can be implemented using
message passing and back-propagation.

47

Summary of the Talk

• Fast yet simple NGD for VI using
Conjugate-Computation VI (AI-STATS
2017),
– Generalization of forward-backward algorithm,

Stochastic VI, Variational Message Passing etc.
– Beyond conjugacy: Extends fast and simple

NGD to deep nets (ICML 2018, NeurIPS 2018).
• Generalizations and Extensions,
– VAEs (ICLR 2018), Mixture of Exponential

Family, Evolution strategy (ArXiv 2017), etc.
48

Related Works

Sorry, if I miss some important
work! Please email me.

49

EM, Forward-Backward, and VI

• Sato (1998), Fast Learning of On-line EM
Algorithm.

• Sato (2001), Online Model Selection Based on
the Variational Bayes.

• Jordan et al. (1999), An Introduction to
Variational Methods for Graphical Models.

• Winn and Bishop (2005), Variational Message
Passing.

• Knowles and Minka (2011), Non-conjugate
Variational Message Passing for Multinomial and
Binary Regression.

50

NGD: Author Name Starting with an H

• Honkela et al. (2007), Natural Conjugate
Gradient in Variational Inference.

• Honkela et al. (2010), Approximate Riemannian
Conjugate Gradient Learning for Fixed-Form
Variational Bayes.

• Hensman et al. (2012), Fast Variational Inference
in the Conjugate Exponential Family.

• Hoffman et al. (2013), Stochastic Variational
Inference.

51

NGD: Author Name Starting with an S

• Salimans and Knowles (2013), Fixed-Form
Variational Posterior Approximation through
Stochastic Linear Regression.
– Approximate Natural-Gradient steps.

• Seth and Khardon (2016), Monte Carlo Structured
SVI for Two-Level Non-Conjugate Models.
– Applies to models with two level of hierarchy.

• Salimbani et al. (2018), Natural Gradients in
Practice: Non-Conjugate Variational Inference in
Gaussian Process Models.
– Fast convergence on GP models

52

NGD for Bayesian Deep Learning

• Zhang et al. (2018), Noisy Natural Gradient as
Variational Inference
– For Bayesian deep learning (similar to

Variational Adam).

53

Issues and Open Problems

• Automatic natural-gradient computation.
• Good implementation of message passing.
– Gradient with respect to covariance matrices.

• Structured approximation for covariance.
• Comparisons on really large problems.
• Applications.
• Flexible posterior approximations.

54

References

55

Available at https://emtiyaz.github.io/publications.html

References

56

Available at https://emtiyaz.github.io/publications.html

57

A 5 page review

Acknowledgement
• RIKEN AIP
– Wu Lin (now at UBC), Didrik Nielsen (now at DTU),

Voot Tangkaratt, Nicolas Hubacher, Masashi
Sugiyama, Sunichi-Amari.

• Interns at RIKEN AIP
– Zuozhu Liu (SUTD, Singapore), Aaron Mishkin (UBC),

Frederik Kunstner (EPFL).

• Collaborators
– Mark Schmidt (UBC), Yarin Gal (University of Oxford),

Akash Srivastava (University of Edinburgh), Reza
Babanezhad (UBC).

58

Thanks!

Slides, papers, and code available at
https://emtiyaz.github.io

59

