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The Goal of My Research

“Io understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”
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Bayesian Inference

* Compute the posterior distribution
— Instead of just a point estimate (e.g. MLE).
* A natural representation of all the past

information which can then be sequentially
updated with new information

— Useful for active learning, sequential experiment
design, continual learning, RL.
— But also for global optimization, causality, etc.

— Eventually, for ML methods which can learn like
humans (data efficient, robust, causal).



Uncertainty in Deep Learning

To estimate the confidence in the
predictions of a deep-learning system
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Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise” 10
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When the data
IS scarce and
noisy, e.g., in
medicine, and
robotics.



Uncertainty for Image Segmentation

Truth  Prediction Uncertainty

(a) Input Image (b) Ground Truth (¢) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

(taken from Kendall et al. 2017)
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Variational Inference (VI)

* Approximate the posterior using optimization

— Popular in reinforcement learning, unsupervised
learning, online learning, active learning etc.

* We need accurate VI algorithms that are
— general (apply to many models),
— scalable (for large data and models),
— fast (converge quickly),
— simple (easy to implement).
» This talk: New algorithms with such features.



Gradient vs Natural-Gradient

* Gradient Descent (GD)

— Rely on stochastic and automatic gradients.

— Simple, general, and scalable, but can have
suboptimal convergence.

— Practical VI (2011), Black-box VI (2014), Bayes by backprop (2015),
ADVI (2015), and many more.

* Natural-Gradient Descent (NGD)

— Fast convergence, but computationally difficult,
therefore not simple, general, and scalable
— (Sato (2001), Riemannian CG (2010), Stochastic VI (2013), etc.

* Fast and simple NGD for complex models,
such as those containing deep networks.
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Talk Outline

 Variational Inference with gradient descent
and natural-gradient descent.

* NGD with Conjugate-Computation VI

— Generalization of forward-backward algorithms,
SVI, Message Passing (Alstats 2017).

— Deep Nets (ICML 2018, NeurlPS 2018).

* (Generalizations and Extensions,

— Structured VAEs (ICLR 2018), Mixture of
Exponential Family approximations, Evolution
strategy (ArXiv 2017), etc.
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Variational Inference

Gradient Descent (GD)
Vs
Natural-Gradient Descent (NGD)
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Bayesian Inference

Bayes’rule : p(0|D) = fﬁ((gﬂg))i((g))d@

Posterior ,
distribution Intractable integral
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Variational Inference

Parameters
— Intractable
Data l f p(DW)p(@)d@' itnteg;reti)l
Variational App'roximation Natural

~ Q)\(H) = Epramlly()\) parameters

Maximize the Evidence Lower Bound (ELBO):

max L)) i= B, [1og p(D, ) — log q,\(e)}
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Relationship to Other Fields

* Perturbation to avoid local minima.
— Gaussian homotopy and Continuation method.
— Smoothed/graduated optimization.

* Online learning.
— Exponentiated weighted averaging.

* Reinforcement learning.
— Structured distribution.
— q is the policy x environment (Levin 2018).



Gradient Descent

Maximize the Evidence Lower Bound (ELBO):

mgxﬁ()\) = E,, | logp(D,0) — logqx(0)

Gradient descent (GD): A < A+ pV\) L



VI with Natural-Gradient Descent

Sato 2001, Honkela et al. 2010, Hoffman et.al. 2013

NGD: )\ < )\ -+ IO‘F()\)_lvAC’ Natural Gradient

|

Fisher Information Matrix (FIM)

F(X) :=Eq, |Viogqr(0)VIoggr(6)

* Fast convergence due to optimization in
Riemannian manifold (not Euclidean space).

* But requires additional computations.
* Can we simplify/reduce this computation?
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Can we simplify NGD computation?
Yes, by using algorithms such as
message passing/ backprop.



The key idea: Expectation Parameters

Expectation/moment/ — R 9
mean parameters 2 qx [qb( )] o

(For Gaussians, it’'s mean and correlation matrix A

Los [0] = m 8, (00" ] =mm' +V

\_ Y,
A key reIationship:F()\)_lvAL =V, L

Natural Gradient wrt Gradient wrt expectation
natural parameter parameter

NGD: A <= A+ pV L
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Conjugate-Computation VI (CVI)

A=A+ pV, L

* |In a “conjugate” model, this is equivalent to
simply adding the natural parameters of
the factors of a model.

* This is a type of conjugate computation,
and enables “simple” updates for complex
models.

25



CVI on Bayesian Linear Regression
gr(0) := N(m, V)

r likelihood prior approx

2| (y — X0) " (y — X0) +40"6 —logqx(0)

\\ Y J

~E, [0]" X"y + trace {XTX]EC]A [HHT]}

VE L (—XTy + 0 - Vim

“g X\

VE,[007]= X'x * — Vv

/

Expectation params Natural Gradient
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NGD == Newton’s Method

m<— (1—p)m—p[XTX +~I] Xy
|

\

Least-square solution
For rho=1, converges in 1 step (Newton’s method).

Gradient descent is suboptimal:
m <— m — a[(XTX - v])m — XTy}

This property generalizes to all “conjugate” models,
where forward-backward algorithm returns the
natural-gradients of ELBO.



Conditionally-Conjugate Models

VMP: Sequential
update with rho =1

For CVI, rho can
follow any schedule,
and updates can be
sequential or parallel.

SVI: Update local variable
with rho=1 and global
variable with rho in (0,1)

' ] ) Global
R
' D
Local |\_/, ,. ata
N

Images taken from Hoffman et al. (2013) and https://www.zybuluo.com/nanmeng/note/369145

28



Convergence Rates for CVI

4}[

Lipschitz constant of

(nonconvex) ELBO
N\

2LC

Gradient noise
variance

e
co?

= Xer) /ol | < | =5

Strong convexity of the
Fisher Information Matrix

Mo,
X _, -

Mini-batch
size

See Khan et al. UAI 2016. The proof is based on
Ghadimi, Lan, and Zhang (2014)
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NGD for Deep Learning

Using CVI on Bayesian deep learning
with Gaussian approximation.
Reduces to a Newton step.
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CVI for Bayesian Neural Network

~ N likelihood prior approx )
La| Y logp(yil fo(zi)) +7076 —loggx(0)
_ =1 neural network Yy,
4 )

m e m = B(S + 1) gi(0) +ym

S (1—B)S 4 BH;(0) —> Looshaiss,

\_ y,
0 ~aqx(0),  gi(0):=—Vglogp(yi|fo(zi)),

Vol S +41 H;(0) := =V log p(yi| fo(z:))
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CVI for Bayesian Neural Network

(X' X +~+D) Xy

‘m o m = B(S + 1) gi(0) + ym

S+ (1—B8)S + BH;(0)— \ Back-propagated

gradient & HeSS|an)

\

0 ~qx(0),  gi(0):=—Vglogp(y:|fo(z:)),
Vo« S+, H;(0) :== =V log p(yi| fo(zs))



Variational Adam for Mean-Field
ICML 2018

Approximate the Hessian by square of gradients.

Neldptive ¢ Anhing{\de methoddagm Addm)

0. Sample € from a standard normal distribution

Otemp %H—I—e*\/\N*scale—Fl’

1. Select a minibatch "Variance
2. Compute gradient using backpropagation
3. Compute a scale vector to adapt the learning rate

4. Take a gradient step
. dadient / N
Mean @ « 6 + learning mafe —
e Vscale + 101#
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Input 2

10 -

lllustration: Classification
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Adam vs Vadam (on Logistic-Reg)

Iteration 1

- Adam

— \/adam
(mean)

Vadam
(samples)

M=5,
Rho = 0.01,

- Gamma = 0.01



Input 2

Adam vs Vadam (on Neural Nets)

Epoch O

4

- Adam
— Vadam
(mean)

Vadam
(samples)

(By Runa E.)
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LeNet-5 on CIFAR10

ol i » —— VOGN
; —— Adam Train L %0 el
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VOGN | Adam

Log Loss | 1.130 | 8.341
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Epochs

(By Anirudh Jain)
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Faster, Simpler, and More Robust

Regression on Australian-Scale dataset using deep
neural nets for various number of minibatch size.

Batch Size: 1

-===EXxisting Method

—(Qur method (Vadam)
——Qur method (VOGN)

2. -
"TT1 ]'

Test log,loss
[—
ro

2000 3000 1000 5000

Iteration

0 1000
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Faster, Simpler, and More Robust

Results on MNIST digit classification (for various

values of Gaussian prior precision parameter)
Precision: 0.01
2.00 :
175 —— Existina Method
—— Our method (Vadam)

Test log,,loss

0.50 A
0.25 -
0.00

000 025 050 075 100 125 150 175 2.00
Epoch




Cumulative rewards

Parameter-Space Noise for Deep RL
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= » = Gradient Descent
= \/adam to Vadagrad

O iniial Positions Avoiding
Local

Minima
An example
taken from

Casella and
Robert’s book.

Vadam
reaches the
flat minima,
but GD gets

stuck at a local
minima.

Optimization by smoothing, Gaussian homotopy/blurring etc., Entropy SGLD
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Stochastic, Low-Rank, Approximate,
Natural-Gradient (SLANG)

NeurlPS 2018

* Low-rank + diagonal covariance matrix.
SLANG is linear in D!

Low-Rank + diagonal

m <+ m — p|UU" +D}_1[gi + ym)|
(1—5)S+ BH;(0)

A~

A~

gradient

fast_eig

a4
(a4

%_

gradient }
|




Neg. ELBO

SLANG is Faster than GD

Classification on USPS with BNNs

Mean-Field === SLANG(1) == SLANG(2) == SLANG(3)

10.0 1

100

10'5

Neg. Test LogLik
(-
o

e e 0.1 +—rrrrreet—rrrrere——r]
1 10 100 1 10 100
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Generalization and
Extensions



Deep Nets + Graphical Models

Neural Nets + Neural Nets + GMM
Linear Dynamical System




Amortized Inference on VAE +
Probabilistic Graphical Models (PGM)

ICLR 2018

Graphical model + Structured Inference
Deep Model Network

:
)

Backprop on DNN, and forward-backward on PGM.



Going Beyond Exponential Family

» Fast and Simple NGD for approximations
outside exponential family,

— Scale mixture of Gaussians, e.g., T-distribution,
— Finite mixture of Gaussian,

— Matrix Variate Gaussian,

— Skew-Gaussians.

* The updates can be implemented using
message passing and back-propagation.



Summary of the Talk

* Fast yet simple NGD for VI using
Conjugate-Computation VI (AI-STATS

2017),
— Generalization of forward-backward algorithm,

Stochastic VI, Variational Message Passing etc.

— Beyond conjugacy: Extends fast and simple

NGD to deep nets (ICML 2018, NeurlPS 2018).

* Generalizations and Extensions,

— VAEs (ICLR 2018), Mixture of Exponential
Family, Evolution strategy (ArXiv 2017), etc.
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Related Works

Sorry, if | miss some important
work! Please email me.
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EM, Forward-Backward, and Vi

Sato (1998), Fast Learning of On-line EM
Algorithm.

Sato (2001), Online Model Selection Based on
the Variational Bayes.

Jordan et al. (1999), An Introduction to
Variational Methods for Graphical Models.

Winn and Bishop (2005), Variational Message
Passing.

Knowles and Minka (2011), Non-conjugate
Variational Message Passing for Multinomial and
Binary Regression.



NGD: Author Name Starting with an H

* Honkela et al. (2007), Natural Conjugate
Gradient in Variational Inference.

* Honkela et al. (2010), Approximate Riemannian
Conjugate Gradient Learning for Fixed-Form
Variational Bayes.

* Hensman et al. (2012), Fast Variational Inference
in the Conjugate Exponential Family.

* Hoffman et al. (2013), Stochastic Variational
Inference.



NGD: Author Name Starting with an S

« Salimans and Knowles (2013), Fixed-Form
Variational Posterior Approximation through
Stochastic Linear Regression.

— Approximate Natural-Gradient steps.

« Seth and Khardon (2016), Monte Carlo Structured
SVI for Two-Level Non-Conjugate Models.

— Applies to models with two level of hierarchy.

« Salimbani et al. (2018), Natural Gradients in
Practice: Non-Conjugate Variational Inference in
Gaussian Process Models.

— Fast convergence on GP models



NGD for Bayesian Deep Learning

* Zhang et al. (2018), Noisy Natural Gradient as
Variational Inference

— For Bayesian deep learning (similar to
Variational Adam).



Issues and Open Problems

Automatic natural-gradient computation.
Good implementation of message passing.
— Gradient with respect to covariance matrices.
Structured approximation for covariance.
Comparisons on really large problems.
Applications.

Flexible posterior approximations.
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A 5 page review

Fast yet Simple Natural-Gradient Descent for
Variational Inference in Complex Models

Mohammad Emtiyaz Khan
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
emtiyaz.khan@riken.jp

Abstract—Bayesian inference plays an important role in ad-
vancing machine learning, but faces computational challenges
when applied to complex models such as deep neural networks.
Variational inference circumvents these challenges by formulating
Bayvesian inference as an optimization problem and solving it
using gradient-based optimization. In this paper, we argue in
favor of natural-gradient approaches which, unlike their gradient-
based counterparts, can improve convergence by exploiting the
information geometry of the solutions. We show how to derive fast
yet simple natural-gradient updates by using a duality associated
with exponential-family distributions. An attractive feature of
these methods is that, by using natural-gradients, they are able
to extract accurate local approximations for individual model
components. We summarize recent results for Bayesian deep
learning showing the superiority of natural-gradient approaches
over their gradient counterparts.

Index Terms—Bayesian inference, variational inference, nat-
ural gradients, stochastic gradients, information geometry,
exponential-family distributions, nonconjugate models.

Didrik Nielsen
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
didrik.nielsen @riken.jp

prove the rate of convergence [7]-19]. Unfortunately, these
approaches only apply to a restricted class of models known
as conditionally-conjugate models, and do not work for non-
conjugate models such as Bayesian neural networks.

This paper discusses some recent methods that generalize
the use of natural gradients to such large and complex non-
conjugate models. We show that, for exponential-family ap-
proximations, a duality between their natural and expectation
parameter-spaces enables a simple natural-gradient update.
The resulting updates are equivalent to a recently proposed
method called Conjugate-computation Variational Inference
(CVI) [10]. An attractive feature of the method is that it
naturally obtains local exponential-family approximations for
individual model components. We discuss the application
of the CVI method to Bayesian neural networks and show
some recent results from a recent work [11] demonstrating
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Thanks!

Slides, papers, and code available at
https://emtiyaz.github.io
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