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Variational Inference (VI)

* Approximate the posterior using optimization.

— Popular in reinforcement learning, unsupervised
learning, online learning, active learning etc.

 We need accurate VI algorithms that are
— general (apply to many models),
— scalable (for large data and models),
— fast (convergence quickly),
— simple (easy to implement).

* This talk: New algorithms with such features.



Gradient vs Natural-Gradient

* Gradient Descent (GD) methods
— Rely on Stochastic and automatic gradients.

— Simple, general, scalable, but can have suboptimal

convergence (Practical VI (2011), Black-box VI (2014), Bayes
by backprop (2015), ADVI (2015), and many more).

* Natural-Gradient Descent (NGD) methods

— Fast convergence, but computationally difficult,

affecting their simplicity, generality and scalability
(Sato (2001), Riemannian CG (2010), Stochastic VI (2013), etc.

* Fast and simple NGD for complex models,
such as those containing deep networks.



Outline of the Talk

* VI with gradient and natural-gradient descent.

* NGD with Conjugate-Computation VI (AI-STATS
2017),

— Generalization of forward-backward algorithm,
Stochastic VI, Variational Message Passing etc.

— Beyond conjugacy: Extends fast and simple NGD
to deep nets (ICML 2018, NeurlPS 2018).

* Generalizations and Extensions,

— VAEs (ICLR 2018), Mixture of Exponential Family
(AABI 2018), Evolution strategy (ArXiv 2017), etc.



Variational Inference

Gradient Descent (GD)
Vs
Natural-Gradient Descent (NGD)



VI with Gradient Descent (GD)

Parameters
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Maximize the Evidence Lower Bound (ELBO):

max L) =E, [logp(D, 0) — log qA(é’)}

Gradient descent (GD): A <— A + pV .\ L




VI with Natural-Gradient Descent
Sato 2001, Honkela et al. 2010, Hoffman et.al. 2013

NGD: A\ < A\ + p\F(A)_lv,\ﬁl Natural Gradient

|
Fisher Information Matrix (FIM)

F()\) :=E,, {v log ¢»(6)V log q,\(e)T}

* NGD optimizes in the Riemannian manifold instead
of the Euclidean geometry (fast convergence).

* But requires additional computations.

* Can we simplify/reduce this computation?




Can we simplify NGD computation?
Yes, by using algorithms such as
message passing/ backprop.



The key idea: Expectation Parameters

Expectation/moment W= 41(1)\ [¢(9)]

/mean parameters \_Y_) Sufficient statistics
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NGD: A <= A+ pV, L



Conjugate-Computation VI (CVI)

A= A+ pV, L

* |[n a conjugate model, this is equivalent to
simply adding the natural parameters of the

factors of a model.
* This is a type of conjugate computation, and

enables “simple” updates for complex models.
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CVI on Bayesian Linear Regression
Q)\(Q) .= N(m, V)

likelihood prior approx
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/
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CVI == Newton’s Method

Conjugate-Compute VI for Bayesian linear regression:
T —1 T
m%(l—p)m—p\[X X +~I X Y
Least-squEre solution

For p = 1, converges in 1 step. It’s newton’s method.

Gradient descent is suboptimal:
m <— m — oz{(XTX +7])m — XTy}

This property generalizes to all conjugate models, where
forward-backward algorithm returns the natural-
gradients of ELBO.



Conditionally-Conjugate Models

* VMP: sequential update < SVI: Update local with

withp =1 p = 1, then update
D global with p € (0,1).
C @
~ o @ ) Global

. 7N
For CVI, p can follow Local Q >. Data

any schedule, and
updates can be done N

sequential or parallel.

Images taken from Hoffman et al. (2013) and https://www.zybuluo.com/nanmeng/note/369145 13



Convergence Rates for CVI

Lipschitz constant of Gradient noise
(nonconvex) ELBO variance
_\ ‘{_
ZLCQ COo
Er AR — A 2 < +
e lICr = Ara)/BIF] < | =222 + 11

Strong convexity of the Mini-batch

Fisher Information Matrix >1z€

Based on Ghadimi, Lan and Zhang (2014)

Faster Stochastic Variational Inference using Proximal-Gradient
Methods with General Divergence Functions, (UAI 2016) M.E.
Khan, R. Babanezhad, W. Lin, M. Schmidt, M. Sugiyama.
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NGD for Non-Conjugate Models

Using CVI on Bayesian deep learning
with Gaussian approximation.
Reduces to a Newton step.
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CVI for Bayesian Neural Network

~ N likelihood prior approx A
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CVI for Bayesian Neural Network
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Variational Adam for Mean-Field
ICML 2018

Approximate the Hessian by the square of gradients.

Ndaptive i¢duhang(tdid anetfodzbevgnAdam)
0. Sample € from a standard normal distribution

Otemp %6’+e>l<\/\N>l<scale+1l

. Select a minibatch "Variance
Compute gradient using backpropagation

Compute a scale vector to adapt the learning rate
. Take a gradient step

gradiadient) / N
Wswalle + 107F

Mean @ & § + learning rafe
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Adam vs Vadam (on Logistic-Reg)

Iteration 1

— Adam
— \/adam
(mean)

Vadam
(samples)

Minibatch 5
Learning_rate =
0.01, Prior
precision = 0.01




Input 2

Adam vs Vadam (on Neural Nets)

Epoch O

) — Adam
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Test log,loss

Faster, Simpler, and More Robust

Regression on Australian-Scale with BNNs

) 0 ' Batch Size: 1

18 - l , | l | --=- Existing Method (BBVI)
1.6 - — Our method (Vadam)
m —— Our method (VOGN)
1.2

2000 3000 4000 5000

lteration

0 1000
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Stochastic, Low-Rank, Approximate,

Natural-Gradient (SLANG)
NeurlPS 2018

* Low-rank + diagonal covariance matrix.
* By approximating the Hessian by empirical Fisher.
e SLANG is linear in D!

(1—=056)5S+ BH;(0)

DxL LxD DxM MxD DxL LxD
£ || gradient .
é:) fast_eig
+ |5 = R
o
e70]

—1
SLANG: g = p; — o Ui UL + Dot | [8(00) + Ay,

Low-Rank + diagonal
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Neg. Test LogLik

SLANG is Faster than MF with GD

Classification on USPS with BNNs

BBB m—— SLANG(1) == SLANG(2) = SLANG(3)
10.0 7 1.0 -
1.0
0.1-
0.1 | | I ) ORI 1 MR
1 10 100 1 10 100

Epoch
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Generalization and Extensions



Deep Nets + Graphical Models

Neural Nets + Neural Nets + GMM
Linear Dynamical System




Amortized Inference on VAE +

Probabilistic Graphical Models (PGM)
ICLR 2018

Graphical model + Structured Inference
Deep Model Network

D,

Backprop on DNN, and forward-backward on PGM.



Going Beyond Exponential Family

* Fast and Simple NGD for approximations
outside exponential family,

— Scale mixture of Gaussians, e.g., T-distribution,
— Finite mixture of Gaussian,

— Matrix Variate Gaussian,

— Gaussian with Low Rank.

 The updates can be implemented using
message passing and back-propagation.



Summary of the Talk

* Fast yet simple NGD for VI using Conjugate-
Computation VI (AI-STATS 2017),

— Generalization of forward-backward algorithm,
Stochastic VI, Variational Message Passing etc.

— Beyond conjugacy: Extends fast and simple NGD
to deep nets (ICML 2018, NeurlPS 2018).

 Generalizations and Extensions,
— VAEs (ICLR 2018), Mixture of Exponential Family

(AABI 2018), Evolution strategy (ArXiv 2017), etc.
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Related Works

Sorry, if | miss some important work!
Please email me.

29



EM, Forward-Backward, and VI

Sato (1998), Fast Learning of On-line EM
Algorithm.

Sato (2001), Online Model Selection Based on the
Variational Bayes.

Jordan et al. (1999), An Introduction to
Variational Methods for Graphical Models.

Winn and Bishop (2005), Variational Message
Passing.

Knowles and Minka (2011), Non-conjugate
Variational Message Passing for Multinomial and
Binary Regression.



NGD: Author Name Starting with an H

 Honkela et al. (2007), Natural Conjugate
Gradient in Variational Inference.

 Honkela et al. (2010), Approximate
Riemannian Conjugate Gradient Learning for
Fixed-Form Variational Bayes.

* Hensman et al. (2012), Fast Variational
Inference in the Conjugate Exponential Family.

 Hoffman et al. (2013), Stochastic Variational
Inference.



NGD: Author Name Starting with an S

e Salimans and Knowles (2013), Fixed-Form
Variational Posterior Approximation through
Stochastic Linear Regression.

— Approximate Natural-Gradient steps.

* Seth and Khardon (2016), Monte Carlo Structured
SVI for Two-Level Non-Conjugate Models.

— Applies to models with two level of hierarchy.

* Salimbani et al. (2018), Natural Gradients in

Practice: Non-Conjugate Variational Inference in
Gaussian Process Models.

— Fast convergence on GP models



NGD for Bayesian Deep Learning

 Zhang et al. (2018), Noisy Natural Gradient as
Variational Inference

— For Bayesian deep learning (similar to Variational
Adam).



Issues and Open Problems

Automatic natural-gradient computation.

Good implementation of message passing.

— Gradient with respect to covariance matrices.
Structured approximation for covariance.
Comparisons on really large problems.
Applications.

Flexible posterior approximations.
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A 5 page review

Fast yet Stmple Natural-Gradient Descent for
Variational Inference in Complex Models

Mohammad Emtiyaz Khan
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Abstract—Bayesian inference plays an important role in ad-
vancing machine learning, but faces computational challenges
when applied to complex models such as deep neural networks.
Variational inference circumvents these challenges by formulating
Bayesian inference as an optimization problem and solving it
using gradient-based optimization. In this paper, we argue in
favor of natural-gradient approaches which, unlike their gradient-
based counterparts, can improve convergence by exploiting the
information geometry of the solutions. We show how to derive fast
yet simple natural-gradient updates by using a duality associated
with exponential-family distributions. An attractive feature of
these methods is that, by using natural-gradients, they are able
to extract accurate local approximations for individual model
components. We summarize recent results for Bayesian deep
learning showing the superiority of natural-gradient approaches
over their gradient counterparts.

Index Terms—Bayesian inference, variational inference, nat-
ural gradients, stochastic gradients, information geometry,
exponential-family distributions, nonconjugate models.

Didrik Nielsen
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
didrik.nielsen @riken.jp

prove the rate of convergence [7]-[9]. Unfortunately, these
approaches only apply to a restricted class of models known
as conditionally-conjugate models, and do not work for non-
conjugate models such as Bayesian neural networks.

This paper discusses some recent methods that generalize
the use of natural gradients to such large and complex non-
conjugate models. We show that, for exponential-family ap-
proximations, a duality between their natural and expectation
parameter-spaces enables a simple natural-gradient update.
The resulting updates are equivalent to a recently proposed
method called Conjugate-computation Variational Inference
(CVD [10]. An attractive feature of the method is that it
naturally obtains local exponential-family approximations for
individual model components. We discuss the application
of the CVI method to Bayesian neural networks and show
some recent results from a recent work [11] demonstrating
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Thanks!

Slides, papers, and code available at
https://emtiyaz.github.io

39



