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Variational Inference	(VI)

• Approximate	the	posterior	using	optimization.
– Popular	in	reinforcement	learning,	unsupervised	
learning,	online	learning,	active	learning	etc.

• We	need	accurate	VI	algorithms	that	are	
– general	(apply	to	many	models),	
– scalable	(for	large	data	and	models),
– fast	(convergence	quickly),	
– simple	(easy	to	implement).

• This	talk:	New	algorithms	with	such	features.
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Gradient	vs	Natural-Gradient
• Gradient	Descent	(GD)	methods
– Rely	on	Stochastic	and	automatic	gradients.
– Simple,	general,	scalable,	but	can	have	suboptimal	
convergence	(Practical	VI	(2011),	Black-box	VI	(2014),	Bayes	
by	backprop (2015),	ADVI	(2015),	and	many	more).

• Natural-Gradient	Descent	(NGD)	methods
– Fast	convergence,	but	computationally	difficult,		
affecting	their	simplicity,	generality	and	scalability	
(Sato	(2001),	Riemannian	CG	(2010),	Stochastic	VI	(2013),	etc.

• Fast	and	simple	NGD for	complex	models,	
such	as	those	containing	deep	networks.
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Outline	of	the	Talk

• VI	with	gradient	and	natural-gradient	descent.
• NGD	with	Conjugate-Computation	VI	(AI-STATS	
2017),
– Generalization	of	forward-backward	algorithm,	
Stochastic	VI,	Variational Message	Passing	etc.	

– Beyond	conjugacy:	Extends	fast	and	simple	NGD	
to	deep	nets	(ICML	2018,	NeurIPS 2018).

• Generalizations	and	Extensions,
– VAEs	(ICLR	2018),	Mixture	of	Exponential	Family	
(AABI	2018),	Evolution	strategy	(ArXiv 2017),	etc.

4



Variational Inference

Gradient	Descent	(GD)	
Vs

Natural-Gradient	Descent	(NGD)
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VI	with	Gradient	Descent	(GD)
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Maximize	the	Evidence	Lower	Bound	(ELBO):

� �+ ⇢r�LGradient	descent	(GD)	:

Intractable	
integral

p(✓|D) =
p(D|✓)p(✓)R
p(D|✓)p(✓)d✓

Natural	
parameters

Parameters

Data

⇡ q�(✓) = ExpFamily(�)

max
�

L(�) := Eq�

h
log p(D, ✓)� log q�(✓)

i

Variational Approximation



VI	with	Natural-Gradient	Descent
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Fisher	Information	Matrix	(FIM)

Natural	Gradient� �+ ⇢F (�)�1r�L

F (�) := Eq�

h
r log q�(✓)r log q�(✓)

>
i

• NGD	optimizes	in	the	Riemannian	manifold	instead	
of	the	Euclidean	geometry	(fast	convergence).

• But	requires	additional	computations.
• Can	we	simplify/reduce	this	computation?

Sato	2001,	Honkela et	al.	2010,	Hoffman	et.al.	2013

NGD:	



Can	we	simplify	NGD	computation?	
Yes,	by	using	algorithms	such	as	
message	passing/	backprop.

Conjugate-Computation	VI
Khan	and	Lin,	AI-STATS	2017
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The	key	idea:	Expectation	Parameters
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F (�)�1r�L = rµL
Natural	Gradient wrt
natural	parameter

Gradient	wrt
expectation	parameter

Sufficient	statistics
Expectation/moment
/mean	parameters	

Eq� [✓✓
>] = mm> + VEq� [✓] = m

For	Gaussians,	it’s	mean	and	correlation	matrix

A	key	relationship:

� �+ ⇢rµLNGD	:

µ := Eq� [�(✓)]



Conjugate-Computation	VI	(CVI)

• In	a	conjugate	model,	this	is	equivalent	to	
simply	adding	the	natural	parameters	of	the	
factors	of	a	model.

• This	is	a	type	of	conjugate	computation,	and	
enables	“simple”	updates	for	complex	models.
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Expectation	params

CVI	on	Bayesian	Linear	Regression
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(y �X✓)>(y �X✓)T + �✓>✓Eq

likelihood

q�(✓) := N (m,V )

� log q�(✓)
approxprior

V �1m0

X>X V �1+

+ �

��I

�X>y

Eq� [✓✓
>] = mm> + V

Eq� [✓] = m

Natural	Gradient

r

r

�Eq� [✓]
>X>y + trace

h
X>XEq� [✓✓

>]
i

=

=



CVI	==	Newton’s	Method
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For	𝜌 = 1,	converges	in	1	step.	It’s	newton’s	method.

m (1� ⇢)m� ⇢
⇥
X>X + �I

⇤�1
X>y

Conjugate-Compute	VI	for	Bayesian	linear	regression:	

Least-square	solution

m m� ↵
h�
X>X + �I

�
m�X>y

iGradient	descent	is	suboptimal:

This	property	generalizes	to	all	conjugate	models,	where	
forward-backward	algorithm	returns	the	natural-
gradients	of	ELBO.



Conditionally-Conjugate	Models

• VMP: sequential	update	
with	𝜌 = 1

• For	CVI,	𝜌 can	follow	
any	schedule,	and	
updates	can	be	done	
sequential	or	parallel.

• SVI:	Update	local	with	
𝜌 = 1, then	update	
global	with	𝜌 ∈ (0,1).
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HOFFMAN, BLEI, WANG AND PAISLEY

Figure 2: A graphical model with observations x1:N , local hidden variables z1:N and global hidden

variables β. The distribution of each observation xn only depends on its corresponding

local variable zn and the global variables β. (Though not pictured, each hidden variable zn,

observation xn, and global variable β may be a collection of multiple random variables.)

2. Stochastic Variational Inference

We derive stochastic variational inference, a stochastic optimization algorithm for mean-field vari-

ational inference. Our algorithm approximates the posterior distribution of a probabilistic model

with hidden variables, and can handle massive data sets of observations.

We divide this section into four parts.

1. We define the class of models to which our algorithm applies. We define local and global

hidden variables, and requirements on the conditional distributions within the model.

2. We review mean-field variational inference, an approximate inference strategy that seeks a

tractable distribution over the hidden variables which is close to the posterior distribution.

We derive the traditional variational inference algorithm for our class of models, which is a

coordinate ascent algorithm.

3. We review the natural gradient and derive the natural gradient of the variational objective

function. The natural gradient closely relates to coordinate ascent variational inference.

4. We review stochastic optimization, a technique that uses noisy estimates of a gradient to

optimize an objective function, and apply it to variational inference. Specifically, we use

stochastic optimization with noisy estimates of the natural gradient of the variational objective.

These estimates arise from repeatedly subsampling the data set. We show how the resulting

algorithm, stochastic variational inference, easily builds on traditional variational inference

algorithms but can handle much larger data sets.

2.1 Models with Local and Global Hidden Variables

Our class of models involves observations, global hidden variables, local hidden variables, and fixed

parameters. The N observations are x = x1:N ; the vector of global hidden variables is β; the N local

hidden variables are z = z1:N , each of which is a collection of J variables zn = zn,1:J; the vector of

fixed parameters is α. (Note we can easily allow α to partly govern any of the random variables,
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Images	taken	from	Hoffman	et	al.	(2013)	and	https://www.zybuluo.com/nanmeng/note/369145



Convergence	Rates	for	CVI
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Convergence

Faster Stochastic Variational Inference using Proximal-Gradient

Methods with General Divergence Functions, (UAI ����) M.E.
Khan, R. Babanezhad, W. Lin, M. Schmidt, M. Sugiyama.

When the lower bound is L-smooth, the stochastic gradients are
unbiased and bounded variance (< �2), the Fisher-information
matrix of q has eigenvalues lower bounded by ↵, step-size
� ⇤ ↵⇤/L with ↵⇤ ⇤ ↵ � 1/(2c) s.t. c > 1/(2↵), and mini-batch
size is M, then at a randomly sampled iteration R we have the
following bound (t is number of iterations):

ER,⇠
⇥
k(�R � �R+1)/�k2⇤ 

"
2LC0

↵2⇤ t
+

c�2

M↵⇤

#

.

Proof is based on Ghadimi, Lan, and Zhang (����).
https://emtiyaz.github.io [��/��]

Based	on	Ghadimi,	Lan	and	Zhang	(2014)
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Lipschitz	constant	of	
(nonconvex)	ELBO

Strong	convexity	of	the	
Fisher	Information	Matrix

Gradient	noise	
variance

Mini-batch	
size



NGD	for	Non-Conjugate	Models

15

Using	CVI	on	Bayesian	deep	learning	
with	Gaussian	approximation.	
Reduces	to	a	Newton	step.



CVI	for	Bayesian	Neural	Network
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Eq

likelihood
� log q�(✓)

approxpriorNX

i=1

log p(yi|f✓(xi)) + �✓>✓
neural	network

m m� �(S + �I)�1[gi(✓) + �m]

S  (1� �)S + �Hi(✓)
Back-propagated	
gradient	&	Hessian

✓ ⇠ q�(✓), gi(✓) := �r✓ log p(yi|f✓(xi)),

V
�1  S + �I, Hi(✓) := �r2

✓ log p(yi|f✓(xi))



CVI	for	Bayesian	Neural	Network
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m m� �(S + �I)�1[gi(✓) + �m]

S  (1� �)S + �Hi(✓)
Back-propagated	
gradient	&	Hessian

✓ ⇠ q�(✓), gi(✓) := �r✓ log p(yi|f✓(xi)),

V
�1  S + �I, Hi(✓) := �r2

✓ log p(yi|f✓(xi))

(X>X + �I)�1X>y



Variational Adam	for	Mean-Field
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1. Select	a	minibatch
2. Compute	gradient	using	backpropagation
3. Compute	a	scale	vector	to	adapt	the	learning	rate
4. Take	a	gradient	step

✓  ✓ + learning rate ⇤ gradientp
scale + 10�8

0.	Sample	𝜖 from	a	standard	normal	distribution
Adaptive	learning-rate	method	(e.g.,	Adam)

✓temp  ✓ + ✏ ⇤
p
N ⇤ scale + 1

✓  ✓ + learning rate ⇤ gradient + ✓/Np
scale + 1/N

Variational Adam	(Vadam)	for	gamma	=1

Variance

Mean

Approximate	the	Hessian	by	the	square	of	gradients.
ICML	2018



Adam	vs	Vadam (on	Logistic-Reg)
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Minibatch 5
Learning_rate =	

0.01,	Prior	
precision	=	0.01

Adam
Vadam
(mean)
Vadam
(samples)



Adam	vs	Vadam (on	Neural	Nets)

20

Adam
Vadam
(mean)
Vadam
(samples)



Faster,	Simpler,	and	More	Robust
Regression	on	Australian-Scale	with	BNNs

21

Existing	Method	(BBVI)
Our	method	(Vadam)
Our	method	(VOGN)



Stochastic,	Low-Rank,	Approximate,	
Natural-Gradient	(SLANG)
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+ = ⇡

(1� �)UtU>
t �GtG>

t

fast_eig

Ut+1U>
t+1

L⇥D M ⇥D L⇥DD ⇥ L D ⇥M D ⇥ L

Figure 2: This figure illustrates Equations (6) and (7) which are used to derive SLANG.

The new covariance approximation can now be used to update µt according to (2) as shown below:

SLANG: µt+1 = µt � ↵t

h
Ut+1U

>
t+1 +Dt+1

i�1
[ĝ(✓t) + �µt] , (11)

The above update uses a stochastic, low-rank covariance estimate to approximate natural-gradient
updates, which is why we use the name SLANG.

When L = D, Ut+1U
>
t+1 is full rank and SLANG is identical to the approximate natural-gradient

update (2). When L < D, SLANG produces matrices ⌃�1
t with diagonals matching (2) at every

iteration. The diagonal correction ensures that no diagonal information is lost during the low-rank
approximation of the covariance. A formal statement and proof is given in Appendix D.

We also tried an alternative method where Ut+1 is learned using an exponential moving-average of
the eigendecompositions of Ĝ(✓). This previous iteration of SLANG is discussed in Appendix B,
where we show that it gives worse results than the SLANG update.

Next, we give implementation details of SLANG.

3.1 Details of the SLANG Implementation

The pseudo-code for SLANG is shown in Algorithm 1 in Figure 3.

At every iteration, we generate a sample ✓t ⇠ N (✓|µt,UtU
>
t + Dt). This is implemented

in line 4 using the function fast_sample (see Algorithm 3 for a pseudo-code). This function
uses the Woodbury identity and the symmetric factorization algorithm of [4] to compute At =�
UtU

>
t + Dt

��1/2. The sample is then computed as ✓t = µt + At✏, where ✏ ⇠ N (0, I). The
function fast_sample requires computations in O(DL

2 +DLS) to generate S samples, which is
linear in D. More details are given in Appendix C.4.

Given a sample, we need to compute and store all the individual stochastic gradients gi(✓t) for all
examples i in a minibatch M. The standard back-propagation implementation does not allow this.
We instead use a version of the backpropagation algorithm outlined in a note by Goodfellow [11],
which enables efficient computation of the gradients ĝi(✓t). This is shown in line 6. More details on
the function backprop_goodfellow is given in Appendix C.1.

In line 7, we compute the eigenvalue value decomposition of (1� �t)UtUt + �tĜ(✓t) by using the
fast_eig function. The function fast_eig implements a randomized eigenvalue decomposition
method discussed in [13]. It computes the top-L eigenvalue decomposition of a low-rank matrix in
O(DLMS +DL

2). More details of the function is given in Appendix C.2. The matrix Ut+1 and
Dt+1 are updated using the eigenvalue decomposition in lines 8, 9 and 10.

In lines 11 and 12, we compute the update vector [Ut+1U
>
t+1 + Dt+1]�1 [ĝ(✓t) + �µt], which

requires solving a linear system. We use the function fast_inverse shown in Algorithm 2. This
function uses the Woodbury identity to efficiently compute the inverse with a cost O(DL

2). More
details are given in Appendix C.3. Finally, in line 13, we update µt+1.

The overall computational complexity of SLANG is O(DL
2 + DLMS) and its memory cost is

O(DL+DMS). Both are linear in D and M . The cost is quadratic in L, but since L ⌧ D (e.g., 5
or 10), this only adds a small multiplicative constant in the runtime. SLANG reduces the cost of the
update (2) significantly while preserving some posterior correlations.
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t+1 + Dt+1]�1 [ĝ(✓t) + �µt], which

requires solving a linear system. We use the function fast_inverse shown in Algorithm 2. This
function uses the Woodbury identity to efficiently compute the inverse with a cost O(DL

2). More
details are given in Appendix C.3. Finally, in line 13, we update µt+1.

The overall computational complexity of SLANG is O(DL
2 + DLMS) and its memory cost is

O(DL+DMS). Both are linear in D and M . The cost is quadratic in L, but since L ⌧ D (e.g., 5
or 10), this only adds a small multiplicative constant in the runtime. SLANG reduces the cost of the
update (2) significantly while preserving some posterior correlations.

5

gradient

gr
ad
ie
nt

S  (1� �)S + �Hi(✓)

• Low-rank	+	diagonal	covariance	matrix.
• By	approximating	the	Hessian	by	empirical	Fisher.	
• SLANG	is	linear	in	D!

Low-Rank	+	diagonal

NeurIPS 2018



Figure 4: This figure compares the convergence behavior on two datasets: USPS 3vs5 (top) and
Breast Cancer (bottom); and two models: Bayesian logistic regression (left) and Bayesian neural
networks (BNN) (right). The three methods SLANG(1, 2, 3) refer to SLANG with L = 1, 5, 10 for
logistic regression. For BNN, they refer to SLANG with L = 8, 16, 32. The mean-field method
is a natural-gradient mean-field method for logistic regression (see text) and BBB [7] for BNN.
This comparison clearly shows that SLANG converges faster than the mean-field method, and,
for Bayesian logistic regression, matches the convergence of the full-Gaussian method when L is
increased.

Table 2: Comparison on UCI datasets using Bayesian neural networks. We repeat the setup used
in Gal and Ghahramani [10]. SLANG uses L = 1, and outperforms BBB but gives comparable
performance to Dropout.

Test RMSE Test log-likelihood
Dataset BBB Dropout SLANG BBB Dropout SLANG
Boston 3.43 ± 0.20 2.97 ± 0.19 3.21 ± 0.19 -2.66 ± 0.06 -2.46 ± 0.06 -2.58 ± 0.05
Concrete 6.16 ± 0.13 5.23 ± 0.12 5.58 ± 0.19 -3.25 ± 0.02 -3.04 ± 0.02 -3.13 ± 0.03
Energy 0.97 ± 0.09 1.66 ± 0.04 0.64 ± 0.03 -1.45 ± 0.10 -1.99 ± 0.02 -1.12 ± 0.01
Kin8nm 0.08 ± 0.00 0.10 ± 0.00 0.08 ± 0.00 1.07 ± 0.00 0.95 ± 0.01 1.06 ± 0.00
Naval 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 4.61 ± 0.01 3.80 ± 0.01 4.76 ± 0.00
Power 4.21 ± 0.03 4.02 ± 0.04 4.16 ± 0.04 -2.86 ± 0.01 -2.80 ± 0.01 -2.84 ± 0.01
Wine 0.64 ± 0.01 0.62 ± 0.01 0.65 ± 0.01 -0.97 ± 0.01 -0.93 ± 0.01 -0.97 ± 0.01
Yacht 1.13 ± 0.06 1.11 ± 0.09 1.08 ± 0.06 -1.56 ± 0.02 -1.55 ± 0.03 -1.88 ± 0.01

work, we use neural networks with one hidden layer with 50 hidden units and ReLU activation
functions. We compare SLANG with L = 1 to the Bayes By Backprop (BBB) method [7] and the
Bayesian Dropout method of [10]. For the 5 smallest datasets, we used a mini-batch size of 10 and 4
Monte-Carlo samples during training. For the 3 larger datasets, we used a mini-batch size of 100
and 2 Monte-Carlo samples during training. More details are given in Appendix F.3. We report test
RMSE and test log-likelihood in Table 2. SLANG with just one rank outperforms BBB on 7 out
of 8 datasets for RMSE and on 5 out of 8 datasets for log-likelihood. Moreover, SLANG shows
comparable performance to Dropout.

Finally, we report results for classification on MNIST. We train a BNN with two hidden layers of
400 hidden units each. The training set consists of 50,000 examples and the remaining 10,000 are
used as a validation set. The test set is a separate set which consists of 10,000 examples. We use
SLANG with L = 1, 2, 4, 8, 16, 32. For each value of L, we choose the prior precision and learning
rate based on performance on the validation set. Further details can be found in Appendix F.4. The
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is a natural-gradient mean-field method for logistic regression (see text) and BBB [7] for BNN.
This comparison clearly shows that SLANG converges faster than the mean-field method, and,
for Bayesian logistic regression, matches the convergence of the full-Gaussian method when L is
increased.

Table 2: Comparison on UCI datasets using Bayesian neural networks. We repeat the setup used
in Gal and Ghahramani [10]. SLANG uses L = 1, and outperforms BBB but gives comparable
performance to Dropout.

Test RMSE Test log-likelihood
Dataset BBB Dropout SLANG BBB Dropout SLANG
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Concrete 6.16 ± 0.13 5.23 ± 0.12 5.58 ± 0.19 -3.25 ± 0.02 -3.04 ± 0.02 -3.13 ± 0.03
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Yacht 1.13 ± 0.06 1.11 ± 0.09 1.08 ± 0.06 -1.56 ± 0.02 -1.55 ± 0.03 -1.88 ± 0.01

work, we use neural networks with one hidden layer with 50 hidden units and ReLU activation
functions. We compare SLANG with L = 1 to the Bayes By Backprop (BBB) method [7] and the
Bayesian Dropout method of [10]. For the 5 smallest datasets, we used a mini-batch size of 10 and 4
Monte-Carlo samples during training. For the 3 larger datasets, we used a mini-batch size of 100
and 2 Monte-Carlo samples during training. More details are given in Appendix F.3. We report test
RMSE and test log-likelihood in Table 2. SLANG with just one rank outperforms BBB on 7 out
of 8 datasets for RMSE and on 5 out of 8 datasets for log-likelihood. Moreover, SLANG shows
comparable performance to Dropout.

Finally, we report results for classification on MNIST. We train a BNN with two hidden layers of
400 hidden units each. The training set consists of 50,000 examples and the remaining 10,000 are
used as a validation set. The test set is a separate set which consists of 10,000 examples. We use
SLANG with L = 1, 2, 4, 8, 16, 32. For each value of L, we choose the prior precision and learning
rate based on performance on the validation set. Further details can be found in Appendix F.4. The
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Figure 1: Fig. (a) and (c) show two examples of generative models that combine deep models with
PGMs, while Fig. (b) and (d) show our proposed Structured Inference Networks (SIN) for the two
models. The generative models are just like the decoder in VAE but they employ a structured prior,
e.g., Fig. (a) has a mixture-model prior while Fig. (b) has a dynamical system prior. SINs, just like
the encoder in VAE, mimic the structure of the generative model by using parameters �. One main
difference is that in SIN the arrows between yn and xn are reversed compared to the model, while
rest of the arrows have the same direction.

derive a variational message-passing algorithm whose messages automatically reduce to stochastic-
gradients for the deep components of the model, while perform natural-gradient updates for the PGM
part. Overall, our algorithm enables Structured, Amortized, and Natural-gradient (SAN) updates and
therefore we call our algorithm the SAN algorithm. We show that our algorithm give comparable
performance to the method of Johnson et al. (2016) while simplifying and generalizing it. The code
to reproduce our results is available at https://github.com/emtiyaz/vmp-for-svae/.

2 THE MODEL AND CHALLENGES WITH ITS INFERENCE

We consider the modelling of data vectors yn by using local latent vectors xn. Following previous
works (Johnson et al., 2016; Archer et al., 2015; Krishnan et al., 2015), we model the output yn
given xn using a neural network with parameters ✓NN, and capture the correlations among data
vectors y := {y1,y2, . . . ,yN} using a probabilistic graphical model (PGM) over the latent vectors
x := {x1,x2, . . . ,xN}. Specifically, we use the following joint distribution:

p(y,x,✓) :=

"
NY

n=1

p(yn|xn,✓NN)

#

| {z }
DNN

"
p(x|✓PGM)

#

| {z }
PGM

"
p(✓PGM)

#

| {z }
Hyperprior

, (1)

where ✓NN and ✓PGM are parameters of a DNN and PGM respectively, and ✓ := {✓NN,✓PGM}.

This combination of probabilistic graphical model and neural network is referred to as structured
variational auto-encoder (SVAE) by Johnson et al. (2016). SVAE employs a structured prior
p(x|✓PGM) to extract useful structure from the data. SVAE therefore differs from VAE (Kingma
& Welling, 2013) where the prior distribution over x is simply a multivariate Gaussian distribution
p(x) = N (x|0, I) with no special structure. To illustrate this difference, we now give an example.

Example (Mixture-Model Prior) : Suppose we wish to group the outputs yn into K distinct
clusters. For such a task, the standard Gaussian prior used in VAE is not a useful prior. We could
instead use a mixture-model prior over xn, as suggested by (Johnson et al., 2016),

p(x|✓PGM) =
NY

n=1

p(xn|✓PGM) =
NY

n=1

"
KX

k=1

p(xn|zn = k)⇡k

#
, (2)

where zn 2 {1, 2, . . . ,K} is the mixture indicator for the n’th data example, and ⇡k are mixing
proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
a Gaussian distribution p(xn|zn = k) := N (xn|µk,⌃k) giving us the Gaussian Mixture Model
(GMM) prior with PGM hyperparameters ✓PGM := {µk,⌃k,⇡k}Kk=1. The graphical model of
an SVAE with such priors is shown in Figure 1a. This type of structured-prior is useful for
discovering clusters in the data, making them easier to interpret than VAE.
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& Welling, 2013) where the prior distribution over x is simply a multivariate Gaussian distribution
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Example (Mixture-Model Prior) : Suppose we wish to group the outputs yn into K distinct
clusters. For such a task, the standard Gaussian prior used in VAE is not a useful prior. We could
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where zn 2 {1, 2, . . . ,K} is the mixture indicator for the n’th data example, and ⇡k are mixing
proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
a Gaussian distribution p(xn|zn = k) := N (xn|µk,⌃k) giving us the Gaussian Mixture Model
(GMM) prior with PGM hyperparameters ✓PGM := {µk,⌃k,⇡k}Kk=1. The graphical model of
an SVAE with such priors is shown in Figure 1a. This type of structured-prior is useful for
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proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
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where zn 2 {1, 2, . . . ,K} is the mixture indicator for the n’th data example, and ⇡k are mixing
proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
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(GMM) prior with PGM hyperparameters ✓PGM := {µk,⌃k,⇡k}Kk=1. The graphical model of
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Going	Beyond	Exponential	Family

• Fast	and	Simple	NGD	for	approximations	
outside	exponential	family,
– Scale	mixture	of	Gaussians,	e.g.,	T-distribution,
– Finite	mixture	of	Gaussian,
–Matrix	Variate	Gaussian,
– Gaussian	with	Low	Rank.	

• The	updates	can	be	implemented	using	
message	passing	and	back-propagation.
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Summary	of	the	Talk

• Fast	yet	simple	NGD	for	VI	using	Conjugate-
Computation	VI	(AI-STATS	2017),
– Generalization	of	forward-backward	algorithm,	
Stochastic	VI,	Variational Message	Passing	etc.	

– Beyond	conjugacy:	Extends	fast	and	simple	NGD	
to	deep	nets	(ICML	2018,	NeurIPS 2018).

• Generalizations	and	Extensions,
– VAEs	(ICLR	2018),	Mixture	of	Exponential	Family	
(AABI	2018),	Evolution	strategy	(ArXiv 2017),	etc.
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Related	Works

Sorry,	if	I	miss	some	important	work!	
Please	email	me.
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EM,	Forward-Backward,	and	VI

• Sato	(1998),	Fast	Learning	of	On-line	EM	
Algorithm.

• Sato	(2001),	Online	Model	Selection	Based	on	the	
Variational Bayes.

• Jordan	et	al.	(1999),	An	Introduction	to	
Variational Methods	for	Graphical	Models.

• Winn	and	Bishop	(2005),	Variational Message	
Passing.

• Knowles	and	Minka (2011),	Non-conjugate	
Variational Message	Passing	for	Multinomial	and	
Binary	Regression.
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NGD:	Author	Name	Starting	with	an	H

• Honkela et	al.	(2007),	Natural	Conjugate	
Gradient	in	Variational Inference.

• Honkela et	al.	(2010),	Approximate	
Riemannian	Conjugate	Gradient	Learning	for	
Fixed-Form	Variational Bayes.

• Hensman et	al.	(2012),	Fast	Variational
Inference	in	the	Conjugate	Exponential	Family.

• Hoffman	et	al.	(2013),	Stochastic	Variational
Inference.
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NGD:	Author	Name	Starting	with	an	S

• Salimans and	Knowles	(2013),	Fixed-Form	
Variational Posterior	Approximation	through	
Stochastic	Linear	Regression.	
– Approximate	Natural-Gradient	steps.

• Seth	and	Khardon (2016),	Monte	Carlo	Structured	
SVI	for	Two-Level	Non-Conjugate	Models.
– Applies	to	models	with	two	level	of	hierarchy.

• Salimbani et	al.	(2018),	Natural	Gradients	in	
Practice:	Non-Conjugate	Variational Inference	in	
Gaussian	Process	Models.
– Fast	convergence	on	GP	models

32



NGD	for	Bayesian	Deep	Learning

• Zhang	et	al.	(2018),	Noisy	Natural	Gradient	as	
Variational Inference
– For	Bayesian	deep	learning	(similar	to	Variational
Adam).

33



Issues	and	Open	Problems

• Automatic	natural-gradient	computation.
• Good	implementation	of	message	passing.
– Gradient	with	respect	to	covariance	matrices.

• Structured	approximation	for	covariance.
• Comparisons	on	really	large	problems.
• Applications.
• Flexible	posterior	approximations.
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Abstract—Bayesian inference plays an important role in ad-
vancing machine learning, but faces computational challenges
when applied to complex models such as deep neural networks.
Variational inference circumvents these challenges by formulating
Bayesian inference as an optimization problem and solving it
using gradient-based optimization. In this paper, we argue in
favor of natural-gradient approaches which, unlike their gradient-
based counterparts, can improve convergence by exploiting the
information geometry of the solutions. We show how to derive fast
yet simple natural-gradient updates by using a duality associated
with exponential-family distributions. An attractive feature of
these methods is that, by using natural-gradients, they are able
to extract accurate local approximations for individual model
components. We summarize recent results for Bayesian deep
learning showing the superiority of natural-gradient approaches
over their gradient counterparts.

Index Terms—Bayesian inference, variational inference, nat-
ural gradients, stochastic gradients, information geometry,
exponential-family distributions, nonconjugate models.

I. INTRODUCTION

Modern machine-learning methods, such as deep learn-
ing, are capable of producing accurate predictions which
has lead to their enormous recent success in fields, e.g.,
computer vision, speech recognition, and recommendation
systems. However, this is not enough for other fields such
as robotics and medical diagnostics where we also require an
accurate estimate of confidence or uncertainty in the predic-
tions. Bayesian inference provides such uncertainty measures
by using the posterior distribution obtained using Bayes’ rule.
Unfortunately, this computation requires integrating over all
possible values of the model parameters, which is infeasible
for large complex models such as Bayesian neural networks.

Sampling methods such as Markov Chain Monte Carlo
usually converge slowly when applied to such large prob-
lems. In contrast, approximate Bayesian methods such as
variational inference (VI) can scale to large problems by
obtaining approximations to the posterior distribution by us-
ing an optimization method, e.g., stochastic-gradient descent
(SGD) methods [4], [6], [16]. These methods could provide
reasonable approximations very quickly.

An issue in using SGD is that it ignores the information
geometry of the posterior approximation (see Figure 1(a)).
Recent approaches address this issue by using stochastic
natural-gradient descent methods which exploit the Rieman-
nian geometry of exponential-family approximations to im-

prove the rate of convergence [7]–[9]. Unfortunately, these
approaches only apply to a restricted class of models known
as conditionally-conjugate models, and do not work for non-
conjugate models such as Bayesian neural networks.

This paper discusses some recent methods that generalize
the use of natural gradients to such large and complex non-
conjugate models. We show that, for exponential-family ap-
proximations, a duality between their natural and expectation
parameter-spaces enables a simple natural-gradient update.
The resulting updates are equivalent to a recently proposed
method called Conjugate-computation Variational Inference
(CVI) [10]. An attractive feature of the method is that it
naturally obtains local exponential-family approximations for
individual model components. We discuss the application
of the CVI method to Bayesian neural networks and show
some recent results from a recent work [11] demonstrating
faster convergence of natural-gradient VI methods compared
to gradient-based VI methods (see Figure 1(b)).

II. PROBLEM FORMULATION

In this section, we discuss the problem of variational infer-
ence and show how SGD can be used to optimize it. SGD
ignores the geometry of the posterior approximations, and we
discuss how natural-gradient methods address this issue. We
end the section by mentioning issues with existing natural-
gradient methods for variational inference.

A. Variational Inference (VI)
We consider models1 that take the following form:

p(D, z) /
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p(z), where D := {Di}Ni=1 (1)

where p is a likelihood function which relates the model
parameters z to the i’th data-example Di, and p(z) is the
prior distribution which we assume to be an exponential-family
distribution [21],
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, where ⌘0 2 ⌦ (2)

where � is a vector of sufficient statistics, ⌘0 is the natural-
parameter vector, and A(�) is the log-partition function. The

1Methods discussed in this paper apply to a more general class of models,
e.g., the model class discussed in [10], but for clarity of presentation we focus
on a restricted class.
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